Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
Lời giải:
Ta có:
\(f(x)=x^2+x\Rightarrow \frac{1}{f(x)}=\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}\)
Do đó:
\(\frac{1}{f(1)}=1-\frac{1}{2}\)
\(\frac{1}{f(2)}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{f(3)}=\frac{1}{3}-\frac{1}{4}\)
......
\(\frac{1}{f(2014)}=\frac{1}{2014}-\frac{1}{2015}\)
\(\frac{1}{f(2015)}=\frac{1}{2015}-\frac{1}{2016}\)
Cộng theo vế:
\(\frac{1}{f(1)}+\frac{1}{f(2)}+\frac{1}{f(3)}+...+\frac{1}{f(2014)}+\frac{1}{f(2015)}=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)
\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)
\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)
1: \(\left(\dfrac{1}{2}\right)^{27}=\left(\dfrac{1}{8}\right)^9\)
\(\left(\dfrac{1}{3}\right)^{18}=\left(\dfrac{1}{9}\right)^9\)
mà 1/8>1/9
nên \(\left(\dfrac{1}{2}\right)^{27}>\left(\dfrac{1}{3}\right)^{18}\)
2: \(\dfrac{-4}{7}=\dfrac{-32}{56}\)
\(\dfrac{-5}{8}=\dfrac{-35}{56}\)
mà -32>-35
nên \(\dfrac{-4}{7}>\dfrac{-5}{8}\)
hay \(\left(\dfrac{-4}{7}\right)^{205}>\left(-\dfrac{5}{8}\right)^{205}\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
\(F=\left(-\dfrac{1}{2015}\right)^0-\left(\dfrac{13}{27}.\dfrac{162}{39}-1\right)^{2015}+\left(-\dfrac{1}{3}\right)^2\\ F=1-\left(2-1\right)^{2015}+\dfrac{1}{9}\\ F=1-1+\dfrac{1}{9}\\ F=\dfrac{1}{9}\)
Chúc bạn học tốt!!!
bn làm bài này rồi hả