K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Bài 4:

Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM)   (2 góc trong cùng phía)
Mà  là góc ngoài của  nên 
 
 
 AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
  (2 góc so le trong)

Xét  và  có:
 
AH = DE (vì AD +DH = DH + HE)
 (ch/minh trên)
  (cạnh góc vuông - góc nhọn)  DF = BH (2 cạnh tương ứng)
Xét  và  có:

HE = AD (gt)
BH = DF (ch/minh trên)

  (2 cạnh góc vuông)   (2 góc tương ứng)
 BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác:   BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)

14 tháng 3 2020

ccccccccccccccccccccccccccccccccccccccc

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

18 tháng 3 2020

Bài 1

a. (Tự vẽ hình)

Áp dụng định lí Py-ta-go, ta có:

BC2= AB2 + AC2

<=> BC2= 62 + 82

<=> BC2= 100

=> BC = 10 (cm)

18 tháng 3 2020

Bài 1

b. Áp dụng định lí Py-ta-go, ta có:

AC= AH2 + HC2

<=> 8= 4,82 + HC2

<=> 64 = 23,04 + HC2

=> HC= 64 - 23,04 

=> HC= 40,96

=> HC = 6,4 (cm)

=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)

14 tháng 8 2023

B A C M D E M' a)MD vuông góc với AB --> ^MDA=90 độ

ME vuông góc với AC --> ^MEA=90 độ

Mà ^DAE=90 độ => ADME là hình chữ nhật

Tam giác BDM vuông có ^DMB = 45 độ

=> DM=DB

=>Pdme= 2(DM+DA)=2(DB+DA)=2AB=2AC=8(cm)

b) Gọi M' là chân đường cao hạ từ A xuống BC

Ta có: DE=AM ( ADME là hình chữ nhật)

Mà AM≥AM' (Theo tính chất đường xiên)

=> DEmin khi M là chân đường cao hạ từ A xuống BC