Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tu la bn nhe
b) dien tich tam giac ABC la 1/2.AC.AB=1/2.10.8=40 cm vuong
c) tu giac AQBM la hinh vuong <=> tu giac AQBM la hinh thoi co 2 duong cheo AB va QM bang nhau
<=> AB=QM (1)
ta co QM //AC (PM la dtb cua tam giac ABC ,P thuoc QM) (2)
QA //MC (t/g AQBM la hinh thoi=>QA//BM,M thuoc BC) (3)
tu (2),(3) => t/g QMCA la hbh
=> QM=AC (4)
tu (1),(4)=>AB=AC=> tam giac ABC can tai A
tam giac ABC can tai A co goc BAC =90 do
=> tam giac ABC vuong can tai A
vay tam giac ABC vuong can tai A thi t/g AQBM la hinh vuong
Gọi a (cm) là chìu dài của tam giác
Vì tam giác đều nên ta có chìu cao h= \(\frac{a\sqrt{3}}{2}\)
S=\(a.\frac{a\sqrt{3}}{2}\)=\(\sqrt{7203}\)
<=> \(a^2\sqrt{3}=2\sqrt{7203}\)
<=> \(a^2=98\)
<=> \(a=\sqrt{98}=7\sqrt{2}\)
công thức tinh S đều là (a^2*can3)/4 từ đó suy ra cạnh tam giác đều
Lời giải:
a)
Áp dụng định lý Pitago: BC=AB2+AC2−−−−−−−−−−√=25BC=AB2+AC2=25 (cm)
Theo tính chất đường phân giác:
ADDC=ABBC=1525=35ADDC=ABBC=1525=35
⇔ADAD+DC=33+5⇔ADAD+DC=33+5
⇔ADAC=38⇔AD20=38⇒AD=7,5⇔ADAC=38⇔AD20=38⇒AD=7,5 (cm)
b) Ta có: SABC=AH.BC2=AB.AC2SABC=AH.BC2=AB.AC2
⇒AH.BC=AB.AC⇔AH.25=15.20=300⇒AH.BC=AB.AC⇔AH.25=15.20=300
⇒AH=12⇒AH=12 (cm)
Áp dụng định lý Pitago cho tam giác vuông AHBAHB:
BH=AB2−AH2−−−−−−−−−−√=152−122−−−−−−−−√=9BH=AB2−AH2=152−122=9 (cm)
k cho e vs ạ !!!
cj/anh đừng chép bài đó e lm sai rùi
cj/anh theo link này để xem ạ https://h.vn/hoi-dap/tim-kiem?q=1.+Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+%E1%BB%9F+A+,+AB=15cm,AC=20cm,+%C4%91%C6%B0%E1%BB%9Dng+ph%C3%A2n+gi%C3%A1c+BD++a,+t%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AD++b,+g%E1%BB%8Di+H+l%C3%A0+h%C3%ACnh+chi%E1%BA%BFu+c%E1%BB%A7a+A+tr%C3%AAn+BC+.+T%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AH,HB++c,+cm+tam+gi%C3%A1c+AID+l%C3%A0+tam+gi%C3%A1c+c%C3%A2n&id=632651