K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

tick đi sau làm cho

 

30 tháng 12 2015

don gian tick di to lam cho

5 tháng 12 2018

a)Vì AM là đường trung tuyền nên ta có

AM=1/2BC

AM=(1/2).5 => AM=2,5(cm)

b)áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có

AB^2+AC^2=BC^2

thay số ta có : 3^2+AC^2=5^2=>9+AC^2=25=>AC^2=25-9=16

=>AC= căn bậc 2 của 16

=>AC=4(cm)

diện tích tam giác ABC là:

S=1/2a.h=1/2.3.4=6(cm2)

Hết nhé ^_^

ta có tam giác ABC vuông tại A 

Áp dụng tỉ số lượng giác trong .........................

=> AM2=BM.BC

=>AM=\(\sqrt{2,5\times5}\approx3,6cm\)

diện tích tam giác vuông ABC là 

                   STAM GIÁC ABC=\(\frac{1}{2}AM.BC=9cm^2\)

13 tháng 11 2021

Đầu bài sai r nếu cho vầy tính BC ra căn cơ ???

nên sửa Cho BC = 5

13 tháng 11 2021

Ồ cảm ơn bạn cô mik cho đề bài để mik nói lại cô

 

3 tháng 11 2018

Giải bài 21 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Ta có: Giải bài 21 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8 (do hai tam giác có chung chiều cao từ đỉnh A)

ΔABC có AD là phân giác

Giải bài 21 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 21 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) Với n = 7; m = 3, thay vào kết quả phần a ta có:

Giải bài 21 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy diện tích tam giác ADM chiếm 20% diện tích tam giác ABC.

22 tháng 4 2017

Giải:

Ta có AD là đường phân giác của ∆ ABC nên

SABDSADC = ABAC = mn(kết quả ở bài 16)

=> SABDSADC+SABD= mn+m

hay SABDSABC= mn+m => SABM= 12 SABC.

Giả sử AB < AC( m<n) vì AD là đường phân giác, AM là đường trung tuyến kẻ từ A nên AD nằm giữa AB và AM.

=> SADM= SABM - SABD

=> SADM = 12S -mn+mS =

2 tháng 8 2018

a)

Có AB < AC (vì n > m) (1)

Ta có: \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\) ( vì AD là phân giác của góc BAC) (2)

Từ (1) và (2), ta có BD < CD

⇒ D nằm giữa B và M

Đặt S1, S2 lần lượt là diện tích △ADM và △ADC

Ta có: \(\dfrac{S_1}{S_2}=\dfrac{\dfrac{1}{2}.BD.AH}{\dfrac{1}{2}.CD.AH}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{m}{n}\)

\(\dfrac{S_1+S_2}{S_2}=\dfrac{m+n}{n}=\dfrac{S}{S_2}=\dfrac{m+n}{n}\Rightarrow S_2=\dfrac{n.S}{m+n}\)

\(S_{AMC}=S_{AMB}=\dfrac{1}{2}.S\Rightarrow\)diện tích của △ADM là

\(S_{ADM}=S_{ADC}-S_{AMC}=S_2-\dfrac{1}{2}.S=\dfrac{n.S}{m+n}-\dfrac{1}{2}.S=\left[\dfrac{n-m}{2\left(m+n\right)}\right].S\)

b)

\(S_{ADM}=\left[\dfrac{7-3}{2\left(7+3\right)}\right].S=\dfrac{2}{10}.S=\dfrac{1}{5}.S=0,2.S=20\%.S\)

Vậy diện tích của △ADM bằng 20% diện tích của △ABC