\(\dfrac{xyz}{x+y+z}\) biết \(\left(x+y\right):\left(8-z\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

dài lắm

\(\left(x+y\right):\left(8-z\right):\left(y+z\right):\left(10+z\right)=2:5:3:4\\ < =>\dfrac{x+y}{2}=\dfrac{8-z}{5}=\dfrac{y+z}{3}=\dfrac{10-z}{4}\left(1\right)\)

\(\left(1\right)=>\dfrac{8-z}{5}=\dfrac{10+z}{4}\\ < =>4\left(8-z\right)=5\left(10+z\right)\\ < =>32-4z=50+5z\\ < =>-9z=18\\ < =>z=-2\left(2\right)\)

\(\left(1\right)=>\dfrac{y+z}{3}=\dfrac{8-z}{5}\left(3\right)\)

thay (2) vào (3)

\(=>\dfrac{y-2}{3}=\dfrac{8+2}{5}\\ < =>\dfrac{y-2}{3}=2\\ < =>y=8\left(4\right)\)

\(\left(1\right)=>\dfrac{x+y}{2}=\dfrac{8-z}{5}\left(5\right)\)

thay 4 và 2 vào 5

\(=>\dfrac{x+8}{2}=\dfrac{8+2}{5}\\ < =>\dfrac{x+8}{2}=2\\ < =>x=-4\left(6\right)\)

\(=>\dfrac{xyz}{x+y+z}\\ =\dfrac{\left(-2\right).8.\left(-4\right)}{\left(-4\right)+8+\left(-2\right)}\\ =\dfrac{64}{2}\\ =32\)

vậy ...

bài dễ nhưng dài quá @@

chúc may mắn

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)

\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)

2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)

3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)

\(=\dfrac{x+y+z}{2}\)

27 tháng 11 2017

+/ nếu a,b,c>0 hoặc 2 số âm và 1 số dương (abc>0)thì:

M=1+1+1+1=4

+/ nếu a,b,c<0 hoặc 1 số âm và 2 số dương(abc<0) thì:

M=1-1+1-1=0

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

21 tháng 11 2017

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

22 tháng 11 2017

Cảm ơn, mình làm được rồi :>