Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\cos\dfrac{22\pi}{3}=\cos\left(8\pi-\dfrac{2\pi}{3}\right)\\ =\cos\left(-\dfrac{2\pi}{3}\right)\\ =\cos\left(\dfrac{2\pi}{3}\right)\\ =-\cos\dfrac{\pi}{3}\\ =-\dfrac{1}{2}\)
b)
\(\sin\dfrac{23\pi}{4}=\sin\left(6\pi-\dfrac{\pi}{4}\right)\\ =\sin\left(-\dfrac{\pi}{4}\right)\\ =-\dfrac{\sqrt{2}}{2}\)
c)
\(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\\ =\sin\left(8\pi+\dfrac{\pi}{3}\right)-\tan\left(3\pi+\dfrac{\pi}{3}\right)\\ =\sin\dfrac{\pi}{3}-\tan\dfrac{\pi}{3}\\ =\dfrac{\sqrt{3}}{2}-\sqrt{3}\\ =\dfrac{-\sqrt{3}}{2}\)
d)
\(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\\ =\cos\dfrac{\pi}{4}\\ =\dfrac{\sqrt{2}}{2}\)
cau a: \(cos\dfrac{22\Pi}{3}=cos\dfrac{24\Pi-2\Pi}{3}=cos\left(8\Pi-\dfrac{2\Pi}{3}\right)=cos\dfrac{2\Pi}{3}=-\dfrac{1}{2}\)
câu b: \(sin\dfrac{23\Pi}{4}=sin\dfrac{24\Pi-\Pi}{4}=sin\left(6\Pi-\dfrac{\Pi}{4}\right)=-sin\dfrac{\Pi}{4}=-\dfrac{\sqrt{2}}{2}\)
cau c: \(=sin\left(8\Pi-\dfrac{\Pi}{3}\right)-tan\left(3\Pi+\dfrac{\Pi}{3}\right)=-sin\dfrac{\Pi}{3}-tan\dfrac{\Pi}{3}=-\dfrac{\sqrt{3}}{2}-\sqrt{3}=\dfrac{-3\sqrt{3}}{2}\)
cau d: \(cos^2\dfrac{\Pi}{8}-sin^2\dfrac{\Pi}{8}=cos2\left(\dfrac{\Pi}{8}\right)=cos\dfrac{\Pi}{4}=\dfrac{\sqrt{2}}{2}\)
a) A = {\(\dfrac{1}{n\left(n+1\right)}\)| \(n\in\mathbb{N},1\le n\le5\)}
b) B = {\(\dfrac{1}{n^2-1}\)|\(n\in\mathbb{N},2\le n\le6\)\(\)}
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).
b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).
a)\(sin^4\dfrac{\pi}{16}+sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}+sin^4\dfrac{7\pi}{16}\)
\(=\left(sin^4\dfrac{\pi}{16}+sin^4\dfrac{7\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}\right)\)
\(=\left(sin^4\dfrac{\pi}{16}+cos^4\dfrac{\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+cos^4\dfrac{3\pi}{16}\right)\)
\(=1-2sin^2\dfrac{\pi}{16}cos^2\dfrac{\pi}{16}+1-2sin^2\dfrac{3\pi}{16}cos^2\dfrac{3\pi}{16}\)
\(=2-\dfrac{1}{2}sin^2\dfrac{\pi}{8}-\dfrac{1}{2}sin^2\dfrac{3\pi}{8}\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+sin^2\dfrac{3\pi}{8}\right)\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+cos^2\dfrac{\pi}{8}\right)\)
\(=2-\dfrac{1}{2}=\dfrac{3}{2}\).
Có: \(cotx-tanx=\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=\dfrac{cos^2x-sin^2x}{sinxcosx}=\dfrac{2cos2x}{sin2x}\)
Vì vậy:
\(cot7,5^o+tan67,5^o-tan7,5^o-cot67,5^o\)
\(=\left(cot7,5^o-tan7,5^o\right)-\left(cot67,5^o-tan67,5^o\right)\)
\(=\dfrac{2cos15^o}{sin15^o}-\dfrac{2cos135^o}{sin135^o}\)
\(=2\left(\dfrac{cos15^osin135^o-sin15^ocos135^o}{sin15^osin135^o}\right)\)
\(=2.\dfrac{sin120^o}{\dfrac{1}{2}\left(cos120^o-cos150^o\right)}\)
\(=\dfrac{4.\dfrac{\sqrt{3}}{2}}{\dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}\)
a: \(=\left(\dfrac{1}{15}+\dfrac{14}{15}\right)+\left(\dfrac{9}{10}-2-\dfrac{11}{9}\right)+\dfrac{1}{157}\)
\(=1+\dfrac{1}{157}+\dfrac{81-180-110}{90}\)
\(=\dfrac{158}{157}+\dfrac{-209}{90}\simeq-1.315\)
b: \(=\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{2}{6}\)
=1/3-1/3
=0
c: \(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2015\cdot2017}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)
=2016/2017
\(sin\left(\alpha+\dfrac{\pi}{6}\right)-cos\left(\alpha-\dfrac{2\pi}{3}\right)\)
\(=cos\left(\dfrac{\pi}{3}-\alpha\right)-cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
\(=-sin\left(\dfrac{\pi}{2}-\alpha\right)sin\left(-\dfrac{\pi}{6}\right)\)
\(=cos\alpha.sin\dfrac{\pi}{6}\)\(=\dfrac{1}{3}.\dfrac{1}{2}=\dfrac{1}{6}\).
Đối với casio 580 VNX bấm \(Mode\rightarrow9\rightarrow1\rightarrow2\)
a) - Đối với máy casio 570 VN Plus / 570 ES Plus : bấm \(Mode\rightarrow5\rightarrow1\) . Nhập các hệ số : \(a_1=\frac{3}{4};b_1=-\frac{7}{3};c_1=\frac{4}{5};a_2=\frac{2}{5};b_2=\frac{2}{7};c_2=\frac{2}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1412}{2169}\\y=-\frac{161}{1205}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=-\frac{913}{1064}\\y=\frac{167}{1064}\end{matrix}\right.\)
\(\dfrac{5454}{5757}-\dfrac{171717}{191919}=\dfrac{18\cdot3\cdot101}{19\cdot3\cdot101}-\dfrac{17\cdot10101}{19\cdot10101}=\dfrac{18}{19}-\dfrac{17}{19}=\dfrac{1}{19}\)