K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2022

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\\ =\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)-...-\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{2}\right)\\ =\dfrac{1}{2014}+\dfrac{1}{2014}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2012}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\\ =\dfrac{1}{2014}+\dfrac{1}{2014}-1\\ =\dfrac{1}{1007}-1\\ =-\dfrac{1006}{1007}\)

12 tháng 9 2021

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)

12 tháng 9 2021

Giúp mình với khocroi

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

24 tháng 3 2017

tất nhên là bằng 00000000000000000000000000000000000000

26 tháng 11 2017

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2013.2014}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}=1-\dfrac{1}{2014}=\dfrac{2013}{2014}\left(đpcm\right)\)

3 tháng 4 2017

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

29 tháng 3 2018

Ta có:

*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0\)

19 tháng 12 2017

\(A=\dfrac{2014^{2013}+1}{2014^{2014}+1}\Leftrightarrow2014A=\dfrac{2014^{2014}+2014}{2014^{2014}+1}=\dfrac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\dfrac{2013}{2014^{2014}+1}\)

\(B=\dfrac{2014^{2012}+1}{2014^{2013}+1}\Leftrightarrow2014B=\dfrac{2014^{2013}+2014}{2014^{2013}+1}=\dfrac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\dfrac{2013}{2014^{2013}+1}\)

Dễ thấy: \(1+\dfrac{2013}{2014^{2014}+1}< 1+\dfrac{2013}{2014^{2013}+1}\) nên \(2014A< 2014B\) hay \(A< B\)

6 tháng 8 2017

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)

\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)

\(\Leftrightarrow x=2014\)

Vậy \(x=2014\)

6 tháng 8 2017

\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)

Vậy x = 2014

1 tháng 6 2017

C= \(\dfrac{1}{100}-\)(\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{98.99}\)+\(\dfrac{1}{99.100}\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

=\(\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

= \(\dfrac{1}{100}-\dfrac{99}{100}\)

=\(\dfrac{-98}{100}=-\dfrac{49}{50}\)

13 tháng 5 2017

Ta có:

\(=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+......+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)

sau khi giản ước ta được như sau:

=\(\dfrac{1}{100}-1\)=\(\dfrac{-99}{100}\)