Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng công thức $\cos a=\sin (90-a)$ và $\sin ^2a+\cos ^2a=1$ ta có:
$B=(\cos ^215+\cos ^275)-\cos ^245+(\cos ^235+\cos ^255)-(\cos ^225+\cos ^265)$
$=(\cos ^215+\sin ^215)-\cos ^245+(\cos ^235+\sin ^235)-(\cos ^225+\sin ^225)$
$=1-(\frac{\sqrt{2}}{2})^2+1-1=\frac{1}{2}$
Ta có : \(cos^215^o=sin^275^o;cos^225^o=sin^265^o;cos^235^o=sin^255^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(N=sin^275^o+cos^275^o-\left(sin^265^o+cos^265^o\right)+sin^255^o+cos^255^o-\left(\frac{sin^245^0+cos^245^o}{2}\right)\)
Áp dụng công thức \(sin^2a+cos^2a=1\)ta được
\(N=1-1+1-\frac{1}{2}=\frac{1}{2}\)
Vậy N = 1/2
câu b chờ chút mình làm cho nhé <33
Ta có : \(cos^21^o=sin^289^o;cos^22^o=sin^288^o;...;cos^244^o=sin^246^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(A=\frac{sin^245^o+cos^245^o}{2}+\left(sin^246^0+cos^246^o\right)+...+\left(sin^289^o+cos^289^o\right)\)
Áp dụng ct \(sin^2a+cos^2a=1\)ta được \(A=\frac{1}{2}+1+1+...+1=...\)
P/S : bạn tự đếm xem bao nhiêu cặp nhé ;) tìm ssh á
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)
a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)
b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
Có
A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)
\(=\left(sin^215^o+cos^215^o\right)+...\)
\(=1\cdot3=3\)
Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ
Nói chung nếu: a+b=90 độ
thì: \(sin^2a+sin^2b=1\)
b) thì áp dụng nếu a+b=90 độ:
\(tana=cotb\) và ngược lại
Mà \(tana\cdot cota=1\)
Nói chung là công thức......
Bài 1 :
\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)
\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)
\(=1+1+1=3\)
Bài 2 :
\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)
\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
Bài 3 :
\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)
\(=1\)