Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý hàm cos ta có \(CA^2=AB^2+BC^2-2AB.BC.cos\widehat{ABC}=2^2+3^2-2.2.3.cos\widehat{60o}=4+9-6=7\Rightarrow CA=\sqrt{7}\).
\(P_{ABC}=AB+BC+CA=2+3+\sqrt{7}=5+\sqrt{7}\). (đvđd)
\(S_{ABC}=\dfrac{1}{2}AB.BC.sin\widehat{ABC}=\dfrac{1}{2}.2.3.sin60^o=\dfrac{1}{2}.6.\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}}{4}\). (đvdt)
Chọn B.
Theo định lí côsin ta có
BC2 = AB2 + AC2 - 2.AB.AC.cos A = 102 + 42 - 2.10.4.cos 60 = 76
Suy ra BC ≈ 8,72
Suy ra chu vi tam giác là 10 + 4 + 8,72 = 22,72
Theo định lí sin:
\(sinB=\dfrac{b}{2R};sinC=\dfrac{c}{2R};sinA=\dfrac{a}{2R}\)
Theo định lí cosin:
\(cosB=\dfrac{a^2+c^2-b^2}{2ac};cosC=\dfrac{a^2+b^2-c^2}{2ab};cosA=\dfrac{b^2+c^2-a^2}{2bc}\)
Theo giả thiết ta có:
\(\left\{{}\begin{matrix}sinB+sinC=2sinA\\cosB+cosC=2cosA\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R}\\\dfrac{a^2+c^2-b^2}{2ac}+\dfrac{a^2+b^2-c^2}{2ab}=2.\dfrac{b^2+c^2-a^2}{2bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{a^2b+bc^2-b^3}{2abc}+\dfrac{a^2c+b^2c-c^3}{2abc}=\dfrac{b^2+c^2-a^2}{bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{\left(b+c\right)\left(a^2+bc-b^2-c^2+bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{2a\left(a^2-b^2-c^2+2bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+2bc=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\left(\dfrac{b+c}{2}\right)^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3b^2+3c^2-6bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\Delta ABC\) đều
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)