Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}=\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}=\frac{1}{5}\)
Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101
A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ............ + 99.101 (103 - 3)
A = (1.3.5 + 3.5.7 + 5.7.9 + .......... + 99.101.103) - (1.3.3 + 3.5.3 + ....... + 99.101.3)
A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + ...... + 99.101)
A = 13517400 - 3.171650
A = 13002450
Sai số tương đối của kết quả các phép đo lần lượt là:
Ta có δ 3 là số nhỏ nhất trong các số trên. Vậy phép đo thứ ba có kết quả chính xác nhất.
Đáp án C
Đường chéo của hình vuông có cạnh bằng 3 cm là 3√2 cm.
Ta có: a-- = 3√2, a = 3.1,41
√Δa =|a-- - a|= 0,0126 ≤ 0,0127
Vậy độ chính xác là d = 0,0127
\(\dfrac{C_n^k}{\left(k+1\right)\left(k+2\right)}=\dfrac{n!}{\left(k+1\right)\left(k+2\right).k!\left(n-k\right)!}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.\dfrac{\left(n+2\right)!}{\left(n+2-\left(k+2\right)\right)!\left(k+2\right)!}\)
\(=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.C_{n+2}^{k+2}\)
Đặt tổng trên là A
\(\Rightarrow A=\dfrac{-1.C_{2024}^3}{2023.2024}+\dfrac{2.C_{2024}^4}{2023.2024}+\dfrac{-3.C_{2024}^5}{2023.2024}+...+\dfrac{2022.C_{2024}^{2024}}{2023.2024}\)
\(=\dfrac{1}{2023.2024}\left(-1.C_{2024}^3+2.C_{2024}^4+...+2022.C_{2024}^{2024}\right)=\dfrac{1}{2023.2024}.B\)
Xét \(C=-2.\left(-C_{2024}^3+C_{2024}^4-C_{2024}^5+...+C_{2024}^{2024}\right)\)
\(\Rightarrow B-C=-3C_{2024}^3+4C_{2024}^4-5C_{2024}^5+...+2024.C_{2024}^{2024}\)
Ta có:
\(k.C_n^k=\dfrac{n!.k}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(\left(n-1\right)-\left(k-1\right)\right)!.\left(k-1\right)!}=n.C_{n-1}^{k-1}\)
\(\Rightarrow B-C=-2024.C_{2023}^2+2024C_{2023}^3+...+2024.C_{2023}^{2023}\)
\(=-2024\left(C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}\right)\)
Xét khai triển:
\(\left(1-x\right)^k=C_k^0-xC_k^1+x^2C_k^2+...+\left(-1\right)^kx^k.C_k^k\)
Thay \(k=2024\); \(x=1\)
\(\Rightarrow0=C_{2024}^0-C_{2024}^1+C_{2024}^2-C_{2024}^3+...+C_{2024}^{2024}\)
\(\Rightarrow-C_{2024}^3+...+C_{2024}^{2024}=C_{2024}^1-C_{2024}^2-1\)
\(\Rightarrow C=-2\left(C_{2024}^1-C_{2024}^2-1\right)=-2\left(2023-C_{2024}^2\right)\)
Thay \(k=2023;x=1\)
\(\Rightarrow0=C_{2023}^0-C_{2023}^1+C_{2023}^2+...-C_{2023}^{2023}\)
\(\Rightarrow C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}=C_{2023}^1-1=2022\)
\(\Rightarrow B-C=-2024.2022\)
\(\Rightarrow B=C-2022.2024=-2\left(2023-C_{2024}^2\right)-2022.2024\)
\(=-2.2023+2023.2024-2022.2024\)
\(=-2022\)
\(\Rightarrow A=\dfrac{-2022}{2023.2024}\)
1/1.2 + 1/2.3 + 1/3.4 + .......................+ 1/99.100
= 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 +..................+ 1/99 - 1/100
= 1 - 1/100
= 99/100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Ma 99/100 < 1.
=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 < 1 (dccm)
Ta có: \(1,41 < \sqrt 2 < 1,42\) hay \(1,415 - 0,005 < \sqrt 2 < 1,415 + 0,005\)
\( \Rightarrow \) Số gần đúng của \(\sqrt 2 \) là 1,415 với độ chính xác 0,005
Khi đó: Độ dài đường chéo của hình vuông cạnh 10 cm là: \(10.1,415 = 14,15\;(cm)\)
Độ dài đúng là \(10\sqrt 2 \)cm, thỏa mãn: \(10.1,41 < 10\sqrt 2 < 10.1,42\) hay \(14,1 < 10\sqrt 2 < 14,2\)
Do đó \(14,1 - 14,15 < 10\sqrt 2 - 14,15 < 14,2 - 14,15\), tức là \(\left| {10\sqrt 2 - 14,15} \right| < 0,05.\)
Vậy kết quả 14,15 cm có độ chính xác là 0,05.
Đặt :
\(A=1.2+2.3+......+2018.2019\)
\(\Leftrightarrow3A=1.2.3+2.3.3+......+2018.2019.3\)
\(\Leftrightarrow3A=1.2.\left(3-0\right)+2.3\left(4-1\right)+....+2018.2019.\left(2020-2017\right)\)
\(\Leftrightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+....+2018.2019.2020-2017.2018.2019\)
\(\Leftrightarrow3A=2018.2019.2020\)
\(\Leftrightarrow A=\frac{2018.2019.2020}{3}\)
Vậy....