\(\sqrt{20}+\sqrt{18}+...+\sqrt{2}\)

các bạn ghi lời g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

bấm máy bình thường thì số quá mũ 19 rồi xin lỗi mình chỉ giải tới mũ 19 được thôi. chức năng máy có giới hạn @@


 

16 tháng 5 2017

Để các biểu thức trên tồn tại thì:

a/ \(4-x^2\ge0\Rightarrow\left(2-x\right)\left(2+x\right)\ge0\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le2}\)

b/ \(x^2-9\ge0\Rightarrow\left(x-3\right)\left(x+3\right)\ge0\Rightarrow\orbr{\begin{cases}x\le-3\\x\ge3\end{cases}}\)

c/ \(\hept{\begin{cases}x-5\ge0\\7-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\le7\end{cases}\Rightarrow}5\le x\le7}\)

1 tháng 9 2016

Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :

Nhận xét : A > 0 

Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)

\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)

\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)

Vậy A = 2

1 tháng 9 2016

cám ơn bạn nhé

18 tháng 2 2016

bạn đặt t= cái phần sau dấu = ..........làm tiếp

18 tháng 2 2016

nếu thế thì có liên quan gì với phần trước không?

24 tháng 5 2021

a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)

\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)

b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)

c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

làm nốt 2 câu cuối nhé, cách làm y trên 

25 tháng 5 2021

d/\(\sqrt{9+4\sqrt{5}}\)

\(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\left|2+\sqrt{5}\right|\)

=  \(2+\sqrt{5}\)

e/ \(\sqrt{21+4\sqrt{5}}\)

\(\sqrt{20+4\sqrt{5}+1}\)

=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)

=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(\left|2\sqrt{5}+1\right|\)

\(2\sqrt{5}+1\)

Ta có

\(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}< 16+2\sqrt{16}=16+8=24\)

Ta lại có \(\sqrt{24}^2=24\)

Vậy \(1+\sqrt{15}< \sqrt{24}\)

Bài làm

Ta có: ( 1 + V15  )2  = 1 + 15 + 2 V15  = 16 + 2V15  

           V24 2 = 24 = 16 + 8

Vì V152  = 15 < 16 = 42 

Nên V15 < 4

=> 2V15  < 8

=> 16 + 2V15  < 24

=>  ( 1 + V15  )2  < V24 2 

Vậy 1 + V15 < V24

# Chúc bạn học tốt #