K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(DP=PC=\dfrac{DC}{2}\)

mà AB=CD
nên AM=MB=DP=PC

Ta có: \(AQ=QD=\dfrac{AD}{2}\)

\(BN=NC=\dfrac{BC}{2}\)

mà AD=BC

nên AQ=QD=BN=NC

Xét ΔAQM vuông tại A và ΔCNP vuông tại C có

AQ=CN

AM=CP

Do đó: ΔAQM=ΔCNP

=>MQ=NP(3)

Xét ΔMBN vuông tại B và ΔPDQ vuông tại D có

BM=DP

BN=DQ

Do đó: ΔMBN=ΔPDQ

=>MN=QP(2)

Xét ΔMAQ vuông tại A và ΔMBN vuông tại B có

MA=MB

AQ=BN

Do đó: ΔMAQ=ΔMBN

=>MQ=MN(1)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

=>MNPQ là hình thoi

b: Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

=>BP//DM

=>KS//GI

Xét tứ giác AQCN có

AQ//CN

AQ=CN

Do đó: AQCN là hình bình hành

=>AN//CQ

=>KI//GS

Xét tứ giác IKSG có

IK//SG

IG//SK

Do đó: IKSG là hình bình hành

25 tháng 10 2018

cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt

12 tháng 8 2018

a) EFGH là hình bình hành (các cặp cạnh đối song song)

b) Tam giác CID có PJ//ID và P là trung điểm của CD.

Þ J là trung điểm của CI Þ JC = IJ

Þ AI = IJ = JC;

c) Ta có: SASCQ = 1 2 SEFGH, HE =  2 5 SASCQ.

Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.

Þ SEFGH 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D

30 tháng 10 2018

Minh chi lam theo suy nghi thoi nhe:

a)Xet hinh binh hanh ABCD co:

AB = DC va AB song song voi DC (t/c hinh binh hanh)

ma M la trung diem  AB, N la trung diem DC(gt)

=>AM=DN va AM song song voi DN

=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)

Ta co: AB=2AD(gt)

ma M la trung diem AD(gt)

=>AM=AD

=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)

9 tháng 9 2018

k mk đi 

ai k mk 

mk k lại

thanks

10 tháng 9 2018

Xét tứ giác AMCN có AM song song và bằng CN nên nó là hình bình hành.

Suy ra AN song song và bằng MC.

Xét tam giác DMH và tam giác BNI có:

DM = BN  

\(\widehat{MDH}=\widehat{NBI}\)  (So le trong)

\(\widehat{DMH}=\widehat{BNI}\)   (Cùng bằng góc \(\widehat{HCN}\))

\(\Rightarrow\Delta DMH=\Delta BNI\left(g-c-g\right)\)

\(\Rightarrow\) IN = HM

Vậy nên AI = HC.

Từ đó ta có AI = AN - IC = MC - MH = HC. 

Xét tứ giác AICH có AH song song và bằng IC nên AICH là hình bình hành. Suy ra AH = IC.

Ta thấy ngay trong tam giác DIC, HF là đường trung bình. Vậy thì HF song song và bằng một nửa IC. Tương tự EI song song và bằng một nửa AH. Vậy nên EIFH là hình bình hành.

Để hình bình hành EIFH là hình chữ nhật thì EF = HI.

Xét tam giác BHC có N là trung điểm BC, IN // HC nên IN là đường trung bình của tam giác. Vậy thì IB = HI.

Tương tự HI = DH.

Từ đó ta có IH = BD/3

Mà EF = BC nên để EIFH là hình chữ nhật thì hình bình hành ABCD có BD = 3BC.

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

1 tháng 3 2020

Xin phép ad cho em tách ạ,nguyên 1 câu khá  là dài,hihi

1 tháng 3 2020

Nãy bận xíu :D