Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)
a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)
\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)
b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)
a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)
b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)
Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)
\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)
\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)
Chúng ta tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)
Cách đơn giản nhất là sử dụng L'Hopital:
\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)
Phức tạp hơn thì tách mẫu theo hằng đẳng thức
\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)
Tóm lại ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)
Do đó:
\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)
Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)
\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+4x}-\sqrt[3]{8-x}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+4x}-2+2-\sqrt[3]{8-x}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x+4-4}{\sqrt{4x+4}+2}+\dfrac{8-8+x}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt{4x+4}+2}+\dfrac{x}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{4}{\sqrt{4x+4}+2}+\dfrac{1}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\)
\(=\dfrac{4}{\sqrt{4\cdot0+4}+2}+\dfrac{1}{4+2\cdot\sqrt[3]{8-0}+\sqrt[3]{\left(8-0\right)^2}}\)
\(=\dfrac{4}{2+2}+\dfrac{1}{4+2\cdot2+4}\)
\(=1+\dfrac{1}{12}=\dfrac{13}{12}\)
\(=lim_{x->0}\left(\dfrac{1+x^2-1}{x^2\left(\sqrt[3]{\left(1+x^2\right)^2}+\sqrt[3]{1+x^2}+1\right)}\right)\)
\(=lim_{x->0}1=1\)
Ta xét:
\(\sqrt{1+2x}\cdot\sqrt[3]{1+3x}-1\)
\(=\sqrt{1+2x}-\sqrt{1+2x}+\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1\)
\(=\left(\sqrt{1+2x}-1\right)+\sqrt{1+2x}\cdot\left(\sqrt[3]{1+2x}-1\right)\)
Xét giới hạn trên:
\(\Rightarrow^{lim}_{x\rightarrow0}\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}\)
\(=^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}-1}{x}\right)+^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}\cdot\left(\sqrt[3]{1+2x}-1\right)}{3}\right)\)
Tính giới hạn từng thành phần:
* \(^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}-1}{x}\right)=^{lim}_{x\rightarrow0}\left(\dfrac{1+2x-1}{x\left(\sqrt{1+2x}+1\right)}\right)\)
\(=^{lim}_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+2x}+1}\right)=\dfrac{2}{\sqrt{1+2\cdot0}+1}=1\left(1\right)\)
* \(^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}\right)\)
\(=^{lim}_{x\rightarrow0}\left(\sqrt{1+2x}\cdot\dfrac{1+2x-1}{x\left(\left(\sqrt[3]{1+2x}\right)^2+\sqrt[3]{1+2x}+1\right)}\right)\)
\(=^{lim}_{x\rightarrow0}\left(\sqrt{1+2x}\cdot\dfrac{2}{\left(\sqrt[3]{1+2x}\right)^2+\sqrt[3]{1+2x}+1}\right)\)
\(=\sqrt{1+2\cdot0}\cdot\dfrac{2}{(\sqrt[3]{1+2\cdot0})^2+\sqrt[3]{1+2\cdot0}+1}\)
\(=\dfrac{2}{3}\left(2\right)\)
Lấy \(\left(1\right)+\left(2\right)\) ta được:
\(^{lim}_{x\rightarrow0}\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}=1+\dfrac{2}{3}=\dfrac{5}{3}\)
làm bài lim xem nào :)))
P/s Sở Kiều :))
Hướng làm thôi chứ gõ công thức lâu vl
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+x+1}-\sqrt[3]{x^3+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+x+1}-1}{x}+\dfrac{1-\sqrt[3]{x^3+1}}{x}\)
Đến đây liên hợp là xong phần của bạn đó ;)
Sai roi :v. M thử liên hợp lên t coi xem khử được ko :) Thách