K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(36^2+26^2-52.36=36^2-2.26.36+26^2=\left(36-26\right)^2=10^2=100\)

\(b,2004^2-16^2=\left(2004-16\right)\left(2004+16\right)=1988.2020=4015760\)

\(a,36^2+26^2-52.36\)

\(=36^2-2.26.36+26^2\)

\(=\left(36-26\right)^2\)

\(=10^2=100\)

\(b,2004^2-16^2\)

\(=\left(2004-16\right)\left(2004+16\right)\)

\(=1988.2020\)

\(=4015760\)

13 tháng 10 2021

\(A=\dfrac{526^3-474^3}{52}+526\cdot474\)

\(=526^2+2\cdot526\cdot474+474^2\)

\(=1000^2=1000000\)

12 tháng 10 2021

\(A=\dfrac{298^3+48^3}{346}-298\cdot48\)

\(=298^2-2\cdot298\cdot48+48^2\)

\(=250^2=62500\)

`a, ? = (3x+1)(x+1) = 3x^2 + 4x + 1`

`b, ? = (x^2+2x)(x+2) = x^3 +4x^2 + 4x`

22 tháng 7 2023

a) \(\dfrac{3x+1}{x-1}=\dfrac{3x^2+4x+1}{x^2-1}\)

b) \(\dfrac{x^2+2x}{x^3+8}=\dfrac{x}{x^2-2x+4}\)

28 tháng 10 2022

a: \(36^2+26^2-52\cdot36=\left(36-26\right)^2=10^2=100\)

b: \(99^3+1+3\left(99^2+99\right)\)

\(=\left(99+1\right)^3-3\cdot99\cdot1\cdot\left(99+1\right)+3\left(99^2+99\right)\)

=100^3=10^6

25 tháng 12 2021

Câu 3: 

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

16 tháng 9 2018

b) 4x2 - 25 + (2x + 5)2

= (2x + 5)(2x - 5) + (2x + 5)2

= (2x + 5)(2x - 5 + 2x + 5)

= 4x(2x + 5)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

14 tháng 8 2023

a) \(P\left(x\right)-x\left(x+5\right)-\left(2x-3\right)+x^2\left(3x-2\right)\)

\(P\left(x\right)=-x^2-5x-2x+3+3x^3-2x^2\)

\(P\left(x\right)=3x^3+\left(-x^2-2x^2\right)-\left(5x+2x\right)+3\)

\(P\left(x\right)=3x^3-3x^2-7x+3\)

b) \(Q\left(x\right)=2x\left(x+1\right)+3x\left(5-x\right)-7\left(x-5\right)\)

\(Q\left(x\right)=2x^2+2x+15x-3x^2-7x+35\)

\(Q\left(x\right)=-x^2+10x+35\)

a: P(x)=-x^2-5x-2x+3+3x^3-2x^2

=3x^3-3x^2-7x+3

b: Q(x)=2x^2+2x+15x-3x^2-7x+35

=-x^2+10x+35