Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 12-22+32-............+20152
C=20152-20142+...............+32-22+12
C=(2015+2014)(2015-2014)+(2013+2012)(2013-2012)+...........+(3+2)(3-2)+12
C=2015+2014+2013+.........+3+2+12=2015+2014+2013+............+1
C=2016.2015:2
C=1008.2015
C=??????? bạn tự dùng máy tính
\(C=\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(2013^2-2014^2\right)+2015^2\)
\(C=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2013-2014\right)\left(2013+2014\right)+2015^2\)
\(C=-\left(1+2\right)-\left(3+4\right)-....-\left(2013+2014\right)+2015^2\)
\(C=-\left(1+2+3+4+...+2014\right)+2015^2\)
\(C=-\dfrac{\left(2014+1\right)2014}{2}+2015^2\)
\(C=-2015.1007+2015^2\)
\(C=2015\left(2015-1007\right)=2015.1008\)
\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)
\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)
A=20182+20162+20142+...+42 +22-(20172 +20152+20132+...+ 32 + 1)
A=(2018²-2017²)+(20162-20152)+(2014²-2013²)+...+(2² −1²)
A=2018+2017+2016+2015+2014+2013+...+2+1
\(A=\dfrac{2018\left(2018+1\right)}{2}=\text{2 037 171}\)
Xét Tử số của A ta có:
\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)
\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)
\(C=1-2^2+3^2-4^2+...+2013^2-2014^2+2015^2\)
\(\Leftrightarrow C=2015^2+\left(1-2014^2\right)-\left(2^2-2013^2\right)+\left(3^2-2012^2\right)-...\)
\(\Leftrightarrow C=2015^2+\left(1+2014\right)\left(1-2014\right)-\left(2+2013\right)\left(2-2013\right)+\left(3+2012\right)\left(3-1012\right)-...\)\(\Leftrightarrow C=2015^2+\left[2015.\left(-2013\right)\right]-\left[2015.\left(-2013\right)\right]+...\)
\(\Leftrightarrow C=2015^2\)
(?)
C=(1-2)(1+2)+(3-4)(3+4)+...+(2013-2014)(2013+2014)+2015^2
=2015^2-(1+2+3+...+2013+2014)
=2015^2-2014*2013/2
=2033134
Ta có: C=12-22+32-42+...+20152
=(20152-20142)+(20132-20122)+...+(32-22)+12
=(2015+2014)(2015-2014)+(2013+2012)(2013-2012)+...+(3+2)(3-2)+1
=(2015+2014).1+(2013+2012).1+...+(3+2).1+1
=1+2+3+...+2012+2013+2014+2015
=(2015+1)[(2015-1)/1+1]/2
=2031120
C=1^2-2^2+3^2-4^2+...+2013^2-2014^2+2015^2
=(2015^2-2014^2)+(2013^2-2012^2)+...+(5^2-4^2)+(3^2-2^2)+1^2
=(2015-2014)(2014+2015)+(2013-2012)(2013+2012)+..+(5-4)(5+4)+(3-2)(3+2)+1
=4029+4025+...+9+5+1
số số hạng (4029-1):4+1=1008
tổng là [(4029+1).1008]:2=2031120