Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$S=10^2+(10.2)^2+(10.3)^2+...+(10.9)^2+(10.10)^2$
$=10^2(1^2+2^2+3^2+...+9^2+10^2)$
$=100.385=38500$
:v cả chuyên mục câu hỏi hay :V
Câu 1:
Số số hạng của dãy là:
(99-1):1+1=99( số hạng)
Tổng của dãy trên là:
(99+1).99:2=4950
Câu 2:
Số hạng của dãy là:
(999-1):2+1=500 ( số hạng)
Tổng của dãy trên là:
(999+1).500:2=250000
Câu 3:
Số hạng của dãy là:
(998-10):2+1=495 ( số hạng)
Tổng của dãy trên là:
(998+10).495:2=249480
Bài 1
Số số hạng = ( 99 - 1 ) : 2 + 1 = 99
B = ( 1 + 99 ) x 99 : 2 = 4950
Bài 2
Số số hạng = ( 999 - 1 ) : 2 + 1 = 500
C = ( 1 + 999 ) x 500 : 2 = 250000
Bài 3
Số số hạng = ( 998 - 10 ) : 2 + 1 = 495
D = ( 10 + 998 ) x 495 : 2 = 249480
@duc7bthcsct tính thử rùi nhưng sợ sai nên hỏi cho chắc!
1.ta có :
\(\left(10^3+10^2+10+1\right)^2\)
=\(\left(1111\right)^2\)
=1234321
hc tốt
ai mà bấm máy tính đc
cái đoạn 1+2+3+4+...+1+2+3
chỗ ..... là đến số mấy z bạn