K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

\(B=2016.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(2016.\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2015^2}{2014.2016}\)

\(2016.\frac{2.3.4....2015}{1.2.3.4.5...2014.2015.2016}.\frac{2.3.4....2015}{3.4.5...2014}\)

\(2016.\frac{1}{2016}.2.2015=2.2015=4030\)

23 tháng 4 2018

\(=\frac{4}{3}.\frac{9}{8}...\frac{4060225}{4060224}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3...2015.2015}{1.3.2.4...2014.2016}\)

\(=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)

\(=2015.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}\)

\(=\frac{2015}{1008}\)

20 tháng 4 2018

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4.3.5...2014.2016}\)

\(=\frac{\left(2.3.4..2015\right)\left(2.3.4..2015\right)}{\left(1.2.3..2014\right)\left(3.4.5..2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

Vậy \(C=\frac{2015}{1008}\)

18 tháng 3 2019

2015/2016

Có \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..........\)\(\left(1+\frac{1}{2014.2016}\right)\)

=\(\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)....\left(\frac{2014.2016}{2014.2016}+\frac{1}{2014.2016}\right)\)

=\(\left(\frac{2^2-1}{1.3}+\frac{1}{2.4}\right)\left(\frac{3^2-1}{2.4}+\frac{1}{2.4}\right)......\left(\frac{2015^2-1}{2014.2016}+\frac{1}{2014.2016}\right)\)

=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2015.2015}{2014.2016}\)

=\(\frac{2.2.3.3.....2015.2015}{1.3.2.4....2014.2015}\)

=\(\frac{\left(2.3...2015\right).\left(2.3.....2015\right)}{\left(1.2....2014\right).\left(3.4.....2016\right)}=\frac{2015.2}{2016}=\frac{4030}{2016}\)