K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 2001 + 2001 - 2003 - 2004 ) + ( 2005 + 2006 )

S = ( - 4 ) + ( - 4 ) + .... + ( - 4 ) + ( 2005 + 2006 )

Dãy S có : 2004 - 1 : 1 + 1 = 2004 số hạng

Dãy số S : 2004 : 4  = 501 số ( - 4 )

Dãy đó S = -4 x 501 = -2004 

S = -2004 + ( 2005 + 2006 ) 

S = -2004 + 4011

S = 2007

5 tháng 8 2017

\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)

\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)

\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)

\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)

\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)

\(\Rightarrow x-2009=0\Rightarrow x=2009\)

6 tháng 8 2017

\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)

\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)

\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)

\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)

\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)

\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)

\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)

\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)

\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)

\(\Leftrightarrow x-2009=0\)

\(\Leftrightarrow x=2009\)

Vậy \(x=2009\)

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

21 tháng 1 2017

ko bit

9 tháng 1 2022

Ko biết

14 tháng 10 2024

 

????

 

11 tháng 10 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

11 tháng 10 2020

Ta có:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)

\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

24 tháng 6 2020

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

19 tháng 2 2018

x=-2007