Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/2) x ( 1-1/3) x (1-1/4) x ..... x (1-1/2011) x (1-1/2012)
= 1/2 x 2/3 x 3/4 x ...... x 2010/2011 x 2011/2012
suy ra loại các nhân tử chung ( ko cần viết phần này )
= 1/2012
chúc học tốt
em mới học lớp 5 có j sai cho em xl
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{9\times10}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{10-9}{9\times10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
`A=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(99xx100)`
`=> A=(2-1)/(1xx2)+(3-2)/(2xx3)+...+(100-99)/(99xx100)`
`=> A=1-1/2+1/2-1/3+...+1/99-1/100`
`=> A=1-1/100`
`=> A=99/100
Sửa đề:
A = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(97.98) + 1/(98.99) + 1/(99.100)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100
= 1 - 1/100
= 99/100
\(A=\frac{9}{7}\times\frac{13}{5}\times\frac{9}{4}=\frac{1053}{140}\)
\(B=\frac{27}{5}\times\frac{13}{7}\times\frac{1}{4}=\frac{351}{140}\)
Vậy \(\frac{A}{B}=A:B=\frac{1053}{140}:\frac{351}{140}=\frac{1053}{351}=3\)
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
=1-1/2+1/2-1/3+...+1/100-1/101
=1-1/101=100/101
b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=101-\dfrac{1}{101}< 101\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
\(1-\dfrac{1}{n^2}=\dfrac{n^2-1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)
Áp dụng:
\(\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{625}\right)\)
\(=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{25^2}\right)\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{24.26}{25^2}\)
\(=\dfrac{1.2.3...24}{2.3.4...25}.\dfrac{3.4.5...26}{2.3.4...25}=\dfrac{1}{25}.\dfrac{26}{2}=\dfrac{13}{25}\)
\(=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{575}{576}.\dfrac{624}{625}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{24.26}{25.25}\)
\(=\dfrac{\left(1.2...24\right).\left(3.4...26\right)}{\left(2.3...25\right).\left(2.3...25\right)}\)
\(=\dfrac{1.26}{25.2}=\dfrac{1.2.13}{25.2}=\dfrac{13}{25}\)