K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)

\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)\)

\(A=1-\frac{1}{2^{99}}\)

\(\Rightarrow B=\left(1-\frac{1}{2^{99}}\right)+\frac{1}{2^{99}}=1\)

24 tháng 2 2017

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)\)

=>.\(A=1-\frac{1}{2^{99}}\)

=> \(B=A+\frac{1}{2^{99}}=1-\frac{1}{2^{99}}+\frac{1}{2^{99}}=1\)

9 tháng 3 2016

gui voi nhanh len ma

21 tháng 2 2017

mk ko bit

21 tháng 2 2017

ĐỀ SAI

B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)

\(2B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+......+\left(\frac{1}{99}\right)^2+\left(\frac{1}{100}\right)^2\)

2B-B=(1/100)^2-1/2

BẢO THẰNG ĐINH ĐỨC HÙNG LÀM TIẾP Ý

7 tháng 7 2016

                                       Đặt \(A=1+2+2^2+....+2^{99}+2^{100}\)

                                     \(2A=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)

                                \(2A-A=\left(2+2^2+2^3+2^4+....+2^{100}+2^{101}\right)\)                                                                                                                     \(-\left(1+2+2^2+2^3+...+2^{99}+2^{100}\right)\)

                                    \(\Rightarrow A=2^{101}-1\)

                                      Ủng hộ mk nha!!!

7 tháng 7 2016

Tổng A có 100 số hạng . 

Nhóm 2 số hạng vào 1 nhóm thì vừa hết . Ta có :

          A = (2 + 2^2) + (2^3 + 2^4) + .....+ (2^99 + 2^100)

          A = (2 + 2^2) + 2^2(2 + 2^2) + ......2^98(2 + 2^2)

          A = 6 + 2^2 . 6 + .....+ 2^98 . 6

          A = 6(1 + 2^2 + ....+ 2^98)

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

20 tháng 12 2021

toán lớp 7 khó quá

12 tháng 2 2017

\(1^2+2^2+3^2+...+99^2+100^2\)

\(=1+2\left(1+1\right)+3\left(2+1\right)+99\left(98+1\right)+100\left(99+1\right)\)

\(=1+1.2+2+2.3+3+...+98.99+99+99.100+100\)

\(=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99+100\right)\)

\(=333300+5050\)

\(=338050\)

12 tháng 2 2017

Cảm ơn nhiều !