Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài trên có 2 cách làm:
C1: Tổng trên có số số hạng là:
(99-1):1+1=99(số)
Tổng trên bằng:
(99+1)*99:2=4950
C2: Tổng trên có số cặp có tổng bằng 100 là:
(99-1):1+1:2=49(cặp) dư 1
Dư 1 tức là số ở giữa của tổng và là số 50.
Vậy tổng trên bằng:
100*49+50=4950
\(\Leftrightarrow S=1-2+3-4+5-6+....97-98+99\)
\(\Leftrightarrow S=-1+-1+-1+....+-1+99\)
\(\Leftrightarrow S=-49+99\)
\(\Rightarrow S=50\)
Vậy: \(S=50\)
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
giải
B=1+2+3+......+98+99
+
B=99+98+.....+2+1
2B=100+100+...+100+100 = 100.99 = B = 50.99=4950
T
\(D=\left(-\dfrac{1}{3}\right)^1+\left(-\dfrac{1}{3}\right)^2+...+\left(-\dfrac{1}{3}\right)^{98}+\left(\dfrac{-1}{3}\right)^{99}\)
\(\Leftrightarrow\left(-\dfrac{1}{3}D\right)=\left(-\dfrac{1}{3}\right)^2+...+\left(-\dfrac{1}{3}\right)^{99}+\left(-\dfrac{1}{3}\right)^{100}\)
\(\Leftrightarrow D\cdot\dfrac{-4}{3}=\dfrac{1^{100}}{3^{100}}-\left(-\dfrac{1}{3}\right)=\dfrac{1}{3^{100}}+\dfrac{1}{3}=\dfrac{1+3^{99}}{3^{100}}\)
\(\Leftrightarrow D=\dfrac{3^{99}+1}{3^{100}}:\dfrac{-4}{3}=\dfrac{3^{99}+1}{-4\cdot3^{99}}\)
b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2
=> B x 2 = 2101 - 2100 + 299 - 298 + ...23 - 22
=> B x 2 + B = (2101 - 2100 + 299 - 298 + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)
<=> B x 3 = 2101 - 2 = 2. ( 299 - 1)
=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)
Phần c) Làm tương tự Lấy C x 3 rồi + với C.
Cách 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950