K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2015

 

Cách 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

 

9 tháng 12 2016

B=(1+99)x99:2=4950

9 tháng 12 2016

Bài trên có 2 cách làm: 
C1: Tổng trên có số số hạng là: 
(99-1):1+1=99(số) 
Tổng trên bằng: 
(99+1)*99:2=4950 
C2: Tổng trên có số cặp có tổng bằng 100 là: 
(99-1):1+1:2=49(cặp) dư 1 
Dư 1 tức là số ở giữa của tổng và là số 50. 
Vậy tổng trên bằng: 
100*49+50=4950

28 tháng 3 2017

Số số hạng là

( 99 - 1 ) : 1  + 1 = 99 ( số )

Tổng là

( 1 + 99 ) x 99 : 2 = 4950

ĐS : ....

Tk Đúng cho mk rồi kb ! 

20 tháng 9 2017

giup oi

20 tháng 9 2017

\(\Leftrightarrow S=1-2+3-4+5-6+....97-98+99\)

\(\Leftrightarrow S=-1+-1+-1+....+-1+99\)

\(\Leftrightarrow S=-49+99\)

\(\Rightarrow S=50\)

Vậy: \(S=50\)

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

4 tháng 7 2015

bạn biết cách giải rồi mà

4 tháng 7 2015

giải

     B=1+2+3+......+98+99
+

    B=99+98+.....+2+1

2B=100+100+...+100+100 = 100.99 = B = 50.99=4950

T

\(D=\left(-\dfrac{1}{3}\right)^1+\left(-\dfrac{1}{3}\right)^2+...+\left(-\dfrac{1}{3}\right)^{98}+\left(\dfrac{-1}{3}\right)^{99}\)

\(\Leftrightarrow\left(-\dfrac{1}{3}D\right)=\left(-\dfrac{1}{3}\right)^2+...+\left(-\dfrac{1}{3}\right)^{99}+\left(-\dfrac{1}{3}\right)^{100}\)

\(\Leftrightarrow D\cdot\dfrac{-4}{3}=\dfrac{1^{100}}{3^{100}}-\left(-\dfrac{1}{3}\right)=\dfrac{1}{3^{100}}+\dfrac{1}{3}=\dfrac{1+3^{99}}{3^{100}}\)

\(\Leftrightarrow D=\dfrac{3^{99}+1}{3^{100}}:\dfrac{-4}{3}=\dfrac{3^{99}+1}{-4\cdot3^{99}}\)

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

18 tháng 4 2016

giup vs