Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2017}\left(1+2+...+2017\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{2017}.\frac{2017\left(2017+1\right)}{2}\)
\(=1+\frac{2.3}{2.2}+\frac{3.4}{3.2}+....+\frac{2017.2018}{2017.2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2018}{2}\)
\(=\frac{2+3+4+...+2018}{2}\)
\(=\frac{\frac{2018\left(2018+1\right)}{2}-1}{2}\)
\(=1018585\)
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)
\(A=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+\frac{6}{2}+..........+\frac{2019}{2}=\frac{3+4+5+..............+2019}{2}.\)
ta có 3+4+5+......+2019=(3+2019)2016:2=2038176
=>\(\frac{2038176}{2}=1019088\)
A=\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)..........\left(\frac{2017.2019+1}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.............\frac{4072324}{2017.2019}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...................\frac{2018^2}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{\left(2.3.4..........2018\right).\left(2.3.4............2018\right)}{\left(1.2.3............2017\right).\left(3.4.5..........2019\right)}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2018.2}{1.2019}\right)=\frac{2018.2}{2.2019}=\frac{2018}{2019}\)
Vậy \(A=\frac{2018}{2019}\)
Chúc bn học tốt
\(A:\frac{1}{2}=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2017.2019+1}{2017.2019}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2018^2}{2017.2019}\)
\(=\frac{2.2.3.3.4.4.....2018.2018}{1.3.2.4.3.5....2017.2019}\)
\(=\frac{2.3.4.....2018}{1.2.3.4.....2017}.\frac{2.3.4....2018}{3.4.5.....2019}\)
\(=2018.\frac{2}{2019}\)
\(=\frac{4036}{2019}\)
\(\Rightarrow A=\frac{4036}{2019}.\frac{1}{2}\)
\(A=\frac{2018}{2019}\)
\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}...\frac{-2015}{2016}.\frac{-2016}{2017}\)
\(=\frac{1.2...2015.2016}{2.3...2016.2017}\) ( tử số có chẵn số hạng )
\(=\frac{1}{2017}\)
\(\Rightarrow C=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)....\left(1-\frac{1}{1+2++...+2017}\right)\)
\(\Rightarrow C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)....\left(1-\frac{1+2+...+2017-1}{1+2+3+...+2017}\right)\)
\(\Rightarrow C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)....\left(\frac{2017.2018:2-1}{2017.2018:2}\right)\)
\(\Rightarrow C=\frac{2}{3}.\frac{5}{6}...\frac{2017.2018:2-1}{2017.2018:2}\)
\(\Rightarrow C=\frac{4}{6}.\frac{10}{12}....\frac{2017.2018-1}{2017.2018}\)
\(\Rightarrow C=\frac{1.4}{2.3}.\frac{2.5}{3.4}....\frac{2016.2019}{2017.2018}\)
\(\Rightarrow C=\frac{1.2....2016}{2.3.....2018}.\frac{4.5....2019}{3.4....2017}\)
\(\Rightarrow C=\frac{1}{2017.2018}.\frac{2018.2019}{3}\)
\(\Rightarrow C=\frac{673}{2017}\)
đầu bài mình đặt là A mà giải lại là C =.= nhưng mà ko sao vì bạn làm đúng rồi. cảm ơn An Nguyễn nhé <3