K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

A=[(1+2+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x (2,4x42 - 21x4,8)] / 1+1/2+1/3+...+1/100

= [(1+2+3+...+100) x (1/2 - 1/3 - 1/4-1/5) x (2,4x2x21 - 21x2x 4,8)] / 1+1/2+1/3+...+1/100

=[(1+2+3+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x 0] / 1+1/2+1/3+...+1/100

=0 / 1+1/2+1/3+...+1/100 = 0

26 tháng 7 2017

Cảm ơn các bạn

26 tháng 7 2017

Ta thấy biểu thức trong ngoặc thứ ba của tử số bằng 0

\(\Rightarrow\)tử số phân số trên bằng 0

\(\Rightarrow\) phân số trên bằng 0

14 tháng 5 2019

\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)

\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)

\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)

14 tháng 5 2019

\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)

~ Hok tốt ~

21 tháng 6 2015

a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)

30 tháng 9 2015

\(\frac{1}{2^2}-1=\frac{1-2^2}{2^2}=\frac{\left(1-2\right)\left(1+2\right)}{2^2}=-1.\frac{3}{2^2}\)

\(\frac{1}{3^2}-1=\frac{1-3^2}{3^2}=\frac{\left(1-3\right)\left(1+3\right)}{3^2}=-2.\frac{4}{3^2}\)

Đặt nguyên biểu thức là B , ta có :

\(B=\left[-1.\left(-2\right).\left(-3\right)...\left(-99\right)\right].\frac{3.4.5...101}{\left(2.3.4.5...100\right)^2}\)

\(B=-\left(1.2.3...99\right).\frac{3.4.5...101}{\left(2.3.4.5...100\right)^2}\)

B=\(\frac{-2.\left(3.4.5...99\right)^2.100.101}{2^2\left(3.4.5...99\right)^2.100^2}=\frac{-101}{200}\)

20 tháng 3 2017

S=\(^{2^{2010}-2^{2009}-2^{2008}-...-2-1}\)