\(\dfrac{63^2-47^2}{215^2-105^2}\)      b,\(\dfrac{43...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\cdot\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)

\(=\dfrac{16\cdot110}{110\cdot320}=\dfrac{16}{320}=\dfrac{1}{20}\)

b: \(\dfrac{437^2-363^2}{537^2-463^2}=\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)

\(=\dfrac{74\cdot800}{74\cdot1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)

14 tháng 8 2018

\(\frac{437^2-363^2}{537^2-463^2}\)

\(=\frac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)

\(=\frac{74.800}{74.1000}\)

\(=\frac{80}{1000}=\frac{2}{25}\)

14 tháng 8 2018

\(\frac{437^2-363^2}{537^2-463^2}\)

\(=\frac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)( Áp dụng hằng đẳng thức \(A^2-B^2=\left(A-B\right)\left(A+B\right)\))

\(=\frac{74\cdot800}{74\cdot1000}\)

\(=\frac{4}{5}\)

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

28 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=t\) \(\Rightarrow a=bt\);\(c=dt\)

rồi bạn thế vào điều phải chứng minh là ra

29 tháng 10 2017

Bn lm chi tiết từng bài giúp mk đc k

17 tháng 7 2017

bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)

\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

18 tháng 7 2017

bài 1

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)

\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)

\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)

13 tháng 8 2017

Bài 1:

a) \(x^2-3=1\)

\(\Rightarrow x^2=1+3=4\)

\(\Rightarrow x=\pm2\)

b)\(2x^3+12=-4\)

\(\Rightarrow2x^3=-4-12=-16\)

\(\Rightarrow x^3=-8\)

\(\Rightarrow x=-2\)

c)\(\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{7}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 8 2017

a) \(x^2-3=1\Rightarrow x^2=4\Rightarrow x=\pm2\)

b) \(2x^3+12=-4\Rightarrow2x^3=-16\)

\(\Rightarrow x^3=-\dfrac{16}{2}=-8=-2^3\)

\(\Rightarrow x=-2\)

c) \(\left(2x-3\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d,h,i,k cững tương tự....

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

23 tháng 10 2017

Ta có: \(A=\dfrac{1}{101^2}+\dfrac{1}{102^2}+\dfrac{1}{103^2}+\dfrac{1}{104^2}+\dfrac{1}{105^2}\)
\(A>\dfrac{1}{100.101}+\dfrac{1}{101.102}+\dfrac{1}{102.103}+\dfrac{1}{103.104}+\dfrac{1}{104.105}\)\(A>\dfrac{1}{100}-\dfrac{1}{101}+\dfrac{1}{101}-\dfrac{1}{102}+\dfrac{1}{102}-\dfrac{1}{103}+\dfrac{1}{103}-\dfrac{1}{104}+\dfrac{1}{104}-\dfrac{1}{105}\)\(A>\dfrac{1}{100}-\dfrac{1}{105}\)
\(A>\dfrac{1}{2100}\)
\(B=\dfrac{1}{2^2.3.5^2.7}\)=\(\dfrac{1}{2100}\)

=> \(A>B\)
Vậy \(A>B\)

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

a: \(\Leftrightarrow\left(3x-2\right):\dfrac{7}{5}=\dfrac{17}{7}:\dfrac{13}{5}=\dfrac{85}{91}\)

\(\Leftrightarrow3x-2=\dfrac{85}{91}\cdot\dfrac{7}{5}=\dfrac{17}{13}\)

=>3x=43/13

hay x=43/39

b: \(\Leftrightarrow9x+207=121-8x\)

=>19x=-86

hay x=-86/19

c: \(\Leftrightarrow x^2-9=16\)

=>x2=25

=>x=5 hoặc x=-5

d: \(\Leftrightarrow\left|x\right|=\dfrac{1.64\cdot3.11}{8.51}\simeq0,6\)

=>x=0,6 hoặc x=-0,6

8 tháng 10 2017

\(a.\)

\(A=5\dfrac{4}{23}.27\dfrac{3}{47}+5\dfrac{4}{23}.\left(-4\dfrac{3}{47}\right)\)

\(A=5\dfrac{4}{23}\left(27\dfrac{3}{47}-4\dfrac{3}{47}\right)\)

\(A=5\dfrac{4}{23}\left(27-4\right)\)

\(A=5\dfrac{4}{23}.23\)

\(A=119\)

\(b.\)

\(B=2^3+3.1-2^{-2}.4+\left(-2^2:\dfrac{1}{2}\right).8\)

\(B=2^3+3-\dfrac{1}{4}.4+\left(-8\right).8\)

\(B=2^3+3-1-64\)

\(B=-54\)