Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ đường thẳng y = 2x -1 trên mặt phẳng tọa độ
Với x = 0 thì y = -1, ta được điểm A(0; -1) thuộc đồ thị hàm số y = 2x – 1
Với x = 1 thì y = 1, ta được điểm B(1; 1) thuộc đường thẳng y = 2x – 1
Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm A(0; -1) và điểm B(1; 1)
b) Vì đường thẳng y = ax + b \(\left( {a \ne 0} \right)\) song song với đường thẳng y = 2x -1 nên a = 2
Đường thẳng dã cho là: y = 2x + b
Vì đường thẳng y = 2x + b đi qua điểm M(1; 3) nên:
3 = 2.1 + b suy ra b = 1
Vậy đường thẳng cần tìm là; y = 2x + 1
* Vẽ đường thẳng y = 2x + 1
Với x = 0 thì y = 1, ta được điểm P(0, 1) thuộc đồ thị hàm số y = 2x + 1
Với x = 1 thì y = 1, ta được điểm Q(1; 3) thuộc đồ thị hàm số y = 2x + 1
Đồ thị hàm số y = 2x + 1 là đường thẳng đi qua hai điểm P(0; 1) và Q(1; 3)
a: Thay x=1 và y=2 vào y=ax+b, ta được:
\(a\cdot1+b=2\)
=>a+b=2
Thay x=0 và y=1 vào y=ax+b, ta được:
\(a\cdot0+b=1\)
=>b=1
a+b=2
=>a=2-b
=>a=2-1=1
Vậy: phương trình đường thẳng AB là y=x+1
b: Thay x=-1 vào y=x+1, ta được:
\(y=-1+1=0=y_C\)
vậy: C(-1;0) thuộc đường thẳng y=x+1
hay A,B,C thẳng hàng
c: Thay x=3 và y=2 vào y=x+1, ta được:
\(3+1=2\)
=>4=2(sai)
=>D(3;2) không thuộc đường thẳng AB
d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)
Vì (d) vuông góc với AB nên \(a\cdot1=-1\)
=>a=-1
=>y=-x+b
Thay x=3 và y=2 vào y=-x+b, ta được:
b-3=2
=>b=5
vậy: (d): y=-x+5
Tọa độ giao điểm của hai đường thẳng y=x-7 và y=-4x+3 là:
\(\left\{{}\begin{matrix}x-7=-4x+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+4x=7+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=10\\y=x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-7=-5\end{matrix}\right.\)
Thay x=2 và y=-5 vào y=ax+b, ta được:
a*2+b=-5
=>2a+b=-5(1)
thay x=-1 và y=-3 vào y=ax+b, ta được:
a*(-1)+b=-3
=>-a+b=-3(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=-5\\-a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a=-2\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=a-3=-\dfrac{2}{3}-3=-\dfrac{11}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-\dfrac{2}{3}x-\dfrac{11}{3}\)
a: Phương trình hoành độ giao điểm là:
x-7=-2x-1
=>x+2x=-1+7
=>3x=6
=>x=2
Thay x=2 vào y=x-7, ta được:
y=2-7=-5
=>A(2;-5)
b: Thay x=2 và y=-5 vào y=mx+1, ta được:
\(m\cdot2+1=-5\)
=>2m=-6
=>m=-3
a: Thay x=1 và y=4 vào y=mx+1, ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
b: Để hai đường thẳng này song song với nhau thì
\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)
=>m=0
y = ax + 3
A(-1;1) qua y
Suy ra A(-1;1) thuộc y
1 = a * ( - 1 ) + 3
1 = -a + 3
1 - 3 = -a
-2 = -a
a = 2
Vậy y = 2x + 3
Đáp án đúng là C
Gọi đường thẳng cần tìm là \(d:y = ax + b\).
Vì đường thẳng \(d\) song song với đường thẳng \(y = 2x\) nên \(\left\{ \begin{array}{l}a = 2\\b \ne 0\end{array} \right.\)
Lại có, đường thẳng \(d\) cắt trục tung tại điểm có tung độ bằng 1 nên đường thẳng \(d\) đi qua điểm \(A\left( {0;1} \right)\). Do đó, \(b = 1 \ne 0\) (thỏa mãn).
Vậy đường thẳng \(d\) cần tìm là \(y = 2x + 1\).
a, Với \(m\ne2\)
d đi qua A(0;5) <=> \(m=5\)(tm)
b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><
d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)
* Đường thẳng y = ax + b \(\left( {a \ne 0} \right)\)
Vì hệ số góc bằng -1 nên a = -1
Suy ra đường thẳng đã cho là: y = -x + b
Đường thẳng đi qua điểm M(1; 2) nên thay tọa độ điểm M(1; 2) vào đường thẳng y = -x + b ta được:
2 = -x + b suy ra b = 3
Vậy đường thẳng đã cho tìm được là y = -x + 3
Lời giải:
Vì đt $y=ax+b$ song song với $y=2x+2019$ nên $a=2$
$y=ax+b$ cắt trục tung tại điểm có tung độ $2020$, nghĩa là $(0,2020)\in (y=ax+b)$
$\Leftrightarrow 2020=a.0+b$
$\Rightarrow b=2020$
Vậy $a=2; b=2020$
b nằm ở đâu trong PTĐT $y=ax+20$ vậy bạn?
Em k biết nữa ak