Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
a) Ta có: \(3\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow3\left(-4x^2+5x-1\right)+4\left(3x^2+11x+6\right)-38=0\)
\(\Leftrightarrow-12x^2+15x-3+12x^2+44x+24-38=0\)
\(\Leftrightarrow59x-17=0\)
\(\Leftrightarrow59x=17\)
hay \(x=\frac{17}{59}\)
Vậy: \(x=\frac{17}{59}\)
b) Ta có: \(5\left(2x+3\right)\left(x+2\right)-2\left(5x-4\right)\left(x-1\right)=75\)
\(\Leftrightarrow5\left(2x^2+4x+3x+6\right)-2\left(5x^2-5x-4x+4\right)-75=0\)
\(\Leftrightarrow5\left(2x^2+7x+6\right)-2\left(5x^2-9x+4\right)-75=0\)
\(\Leftrightarrow10x^2+35x+30-10x^2+18x-8-75=0\)
\(\Leftrightarrow53x-53=0\)
\(\Leftrightarrow53x=53\)
hay x=1
Vậy: x=1
c) Ta có: \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Leftrightarrow5x^2-3-5x^2-5x=0\)
\(\Leftrightarrow-3-5x=0\)
\(\Leftrightarrow-5x=-3\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
d) Ta có: \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(x\in\left\{0;6\right\}\)
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
1. -4x( x + 3 )( x - 4 ) - 3x( x2 - x + 1 )
= -4x( x2 - x - 12 ) - 3x( x2 - x + 1 )
= -4x3 + 4x2 + 48x - 3x3 + 3x2 - 3x
= -7x3 + 7x2 + 45x
2. a) 4x( x - 5 ) - ( x - 1 )( 4x - 3 ) = 5
<=> 4x2 - 20x - ( 4x2 - 7x + 3 ) = 5
<=> 4x2 - 20x - 4x2 + 7x - 3 = 5
<=> -13x - 3 = 5
<=> -13x = 8
<=> x = -8/13
b) 6( x - 3 )( x - 4 ) - 6x( x - 2 ) = 4
<=> 6( x2 - 7x + 12 ) - 6x2 + 12x = 4
<=> 6x2 - 42x + 72 - 6x2 + 12x = 4
<=> -30x + 72 = 4
<=> -30x = -68
<=> x = 34/15
Bài 1 :
\(-4x\left(x+3\right)\left(x-4\right)-3x\left(x^2-x+1\right)\)
\(=-7x^3+7x^2+45x\)
Bài 2 :
a, \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-\left[4x^2-7x+3\right]=5\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=5\)
\(\Leftrightarrow-13x-8=0\Leftrightarrow x=-\frac{8}{13}\)
b, \(6\left(x-3\right)\left(x-4\right)-6x\left(x-2\right)=4\)
\(\Leftrightarrow6x^2-42x+72-6x^2+12x=4\)
\(\Leftrightarrow-30x+68=0\Leftrightarrow x=\frac{34}{15}\)
Bài 4.
1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )
<=> x3 + 27 - x3 + 3x = 40 - 8x
<=> 27 + 3x = 40 - 8x
<=> 3x + 8x = 40 - 27
<=> 11x = 13
<=> x = 13/11
2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0
<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0
<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0
<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0
<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)
+) 4x + 4 = 0
<=> 4x = -4
<=> x = -1
+) 4x2 + 8x + 7 = 0 (*)
Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x
=> (*) không xảy ra
Vậy x = -1
Bài 5.
1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 1 <=> x = 1
2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinA = 4 <=> x = -1/2
3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MinA = 15/8 <=> x = -3/4
4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
=> MinA = -25/12 <=> x = -5/6
5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 12
=> MaxB = -3 <=> x = 1
6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxB = 4 <=> x = -2
7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x
Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4
=> MaxB = -7/8 <=> x = 3/4
8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 9/4 <=> x = 3/2
9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )
= [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]
= ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)
Đặt t = x2 + 3x - 4
(*) <=> t( t + 6 )
= t2 + 6t
= ( t2 + 6t + 9 ) - 9
= ( t + 3 )2 - 9
= ( x2 + 3x - 4 + 3 )2 - 9
= ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x
=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^2+6x+9\right)\left(x+1\right)-4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^3+x^2+6x^2+6x+9x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-x^2-6x^2-6x-9x-9+4x^2+8\)
\(A=-12x\)
Thay \(x=-\dfrac{1}{6}\) vào \(A\) ta có:
\(A=-12\times\left(-\dfrac{1}{6}\right)=2\)
Vậy \(A=2\) khi \(x=-\dfrac{1}{6}\)
\(B=\left(x-1\right)^3-+\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(B=\left(x^3-3x^2+3x-1\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)+\left(3x^2-48\right)\)
\(B=x^3-3x^2+3x-1-x^3+2x^2-4x-2x^2+4x-8+3x^2-48\)
\(B=3x-57\)
Thay \(x=-2\) vào \(B\) ta có:
\(B=3\times\left(-2\right)-57=-6-57=-63\)
Vậy \(B=-63\) khi \(x=-2\)