Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần dựa vào 7 hằng đẳng thức thôi nha bạn:
\(\left(2x-3\right)^2=2x^2-12x+9\)
\(\left(x-3y\right)^2=x^2-3y.2x+3y^2\)
\(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2=2x^2-3y^2-2x^2+4xy-y^2=-3y^2+4xy-y^2\)\(\left(x+3y^2\right)^2=x^2+3y^22x+3y^4\)
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng
MIK LM CÂU KHÓ NHẤT NHÁ!
c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)
Vậy...
a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)
=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)
=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\) và \(x-y=15.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)
Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)
Chúc bạn học tốt!
a) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(b.\left(x-3y\right)^2=x^2-6xy+9y^2\)
c) \(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2\)
\(=\left(4x^2-9y^2\right)-\left(4x^2+4xy+y^2\right)\)
\(=-10y^2-4xy\)
\(=-2y\left(5y+2x\right)\)
d) \(\left(x+3y^2\right)^2\)
\(=x^2+6xy^2+9y^4\)