Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/1.3 + 2/3.5 + 2/5.7 +...+ 2/97.99
=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99)
=1-1/99=98/99
A = 1×3+3×5+5×7+...+ 97×99+99×101
6A= 1×3×6+3×5×6+5×7×6+...+97×99×6+99×101×6
6A= 1×3×(5+1)+3×5×(7-1)+5×7×(9-3)+...+97×99×(101-95)+99×101×(103-97)
6A = 1×3×5-1×3+3×5×7-1×3×5+5×7×9-3×5×7+7×9×11-5×7×9+,,,+97×99×101-95×97×99+99×101×103-97×99×101
6A= 1×3+99×101×103
6A= 1029900
A= 171650
\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{97.99}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+.........+\frac{2}{97.99}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(2A=1-\frac{1}{99}\)
\(A=\frac{98}{99}:2\)
\(A=\frac{49}{99}\)
Ủng hộ mk nha !!! ^_^
\(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+..+\frac{5}{97.99}\)
\(=\frac{5}{2}.\left(5+\frac{5}{3}+\frac{5}{5}+\frac{5}{7}+...+\frac{5}{97}+\frac{5}{99}\right)\)
\(=\frac{5}{2}.\left(5+\frac{5}{99}\right)\)
\(=\frac{5}{2}.\frac{500}{99}\)
\(=\frac{1250}{99}\)(có gì sai sót xin bỏ qua cho T^T)
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{97\cdot99}\)
\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(1-\frac{1}{99}\right)\)
\(=2\cdot\frac{98}{99}\)
\(=\frac{196}{99}\)
câu 1 :
S= 12+22+32+42+.....+992+1002
S =1.(2-1)+2.(3-1)+3.(4-1)+....+99.(100-1)+100.(101-1)
=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100
=(1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+100)
S= [1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99) ] /3 + [(100+1).100 /2]
( Ở đây là cái tổng ở trên nhân 3 nên cuối mới chia 3)
=[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.10.101]/3 + 5050
=100.101.102/3 + 5050
=348450
Mink đã làm được bài này nhưng hình như kết quả của bạn sai. kết quả đúng là: 328350
Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)
=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99
=3+97.99.101
A=\(\frac{1+97.33.101}{2}\) = 161 651
161651