Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...........\left(1-\dfrac{1}{n+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}..............\dfrac{n}{n+1}\)
\(=\dfrac{1.2.3........n}{2.3.......\left(n+1\right)}\)
\(=\dfrac{1}{n+1}\)
2, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
C=\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
=\(-66.\left(\dfrac{5}{66}\right)+124\left(-37-63\right)=-5+124.\left(-100\right)\)
=-12405
\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)
\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
Lời giải:
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)
\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)
\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)
\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)
b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)
\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)
\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)
\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)
\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)
\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)
\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)
\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)
\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+1,24\cdot\left(-37\right)+63\cdot\left(-1,24\right)\)
\(=-66\cdot\dfrac{17}{66}+\left(-1,24\right)\cdot37+63\cdot\left(-1,24\right)\)
\(=-17+\left(1,24\right)\left(37+63\right)\)
\(=-17+\left(-1,24\right)\cdot100\)
\(=-17+\left(-124\right)\)
\(=-141\)
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
a) = 1-1/2+1/2-1/3+...+1/99-1/100 =1 - 1/100 = 99/100