K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2024
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^

20 tháng 8 2017

1.Tính

a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)

b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)

c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)

d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)

e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)

Bài 2

a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)

\(x=\dfrac{13}{49}\)

b.\(\left|x-1,5\right|=2\)

Xảy ra 2 trường hợp

TH1

\(x-1,5=2\)

\(x=3,5\)

TH2

\(x-1,5=-2\)

\(x=-0,5\)

Vậy \(x=3,5\) hoặc \(x=-0,5\) .

Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.

20 tháng 8 2017

Ths bn nhé

26 tháng 11 2022

a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)

b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)

\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)

\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)

\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)

\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)

c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)

d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)

\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)

\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)

e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)

a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)

\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)

\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)

c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)

=1/4+3/4

=1

16 tháng 9 2017

\(B=0,25+3,5-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)\)

\(=\dfrac{17}{20}-\left(\dfrac{39}{40}\right)\)

\(=\dfrac{-1}{8}\)

\(C=\dfrac{2}{3}-\left(\dfrac{-1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(\dfrac{-5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\dfrac{71}{35}\)

\(D=\left(5-\dfrac{3}{4}+\dfrac{1}{5}\right)-\left(6+\dfrac{7}{4}-\dfrac{8}{5}\right)-\left(2-\dfrac{5}{7}+\dfrac{16}{5}\right)\)

\(=5-\dfrac{3}{4}+\dfrac{1}{5}-6-\dfrac{7}{4}+\dfrac{8}{5}-2+\dfrac{5}{7}-\dfrac{16}{5}\)

\(=\left(5-6-2\right)+\left(\dfrac{-3}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{5}+\dfrac{8}{5}-\dfrac{16}{5}\right)+\dfrac{5}{7}\)

\(=\left(-3\right)+\left(\dfrac{-5}{2}\right)+\left(\dfrac{-7}{5}\right)+\dfrac{5}{7}\)

\(=\dfrac{-433}{70}\)

17 tháng 9 2017

bạn ơi mk thấy đây đâu có j là hợp lí đâu

20 tháng 8 2017

bấm máy tính là ra mak

21 tháng 8 2017

Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

Bài 1: 

a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)

c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)

13 tháng 7 2018

\(a)\dfrac{-5}{21}-\dfrac{1}{3}+3\dfrac{1}{2}.\left(\dfrac{-2}{3}\right)^3\)

\(=\dfrac{-5}{21}+\dfrac{-7}{21}+\dfrac{7}{2}.\dfrac{-8}{27}\)

\(=-\dfrac{4}{7}+\dfrac{-28}{27}\)

\(=\dfrac{-108}{189}+\dfrac{-196}{189}\)

\(=-\dfrac{304}{189}\)

14 tháng 7 2018

\(b)-2\dfrac{1}{3}+\left(\dfrac{3}{8}-\dfrac{3}{4}\right)^3:\dfrac{5}{9}-\dfrac{1}{2}\)

\(=-\dfrac{7}{3}+\left(\dfrac{3}{8}-\dfrac{6}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)

\(=-\dfrac{7}{3}+\left(-\dfrac{3}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)

\(=-\dfrac{7}{3}+\dfrac{-27}{512}.\dfrac{9}{5}-\dfrac{1}{2}\)

\(=-\dfrac{7}{3}+\dfrac{-243}{2560}-\dfrac{1}{2}\)

\(=\dfrac{-17920}{7680}+\dfrac{-729}{7680}+\dfrac{-3840}{7680}\)

\(=\dfrac{-22489}{7680}\)