K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

A = \(\frac{-79}{90}\)

B = \(\frac{8}{9}\)

10 tháng 6 2016

cách giải sao chỉ mình với

13 tháng 8 2015

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{12.13}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)

22 tháng 4 2016

= 9/52

10 tháng 4 2019

Đè thừa một số \(\frac{25}{156}\),mk ko lại đề bài nhé

\(A=1-\frac{2+3}{2\cdot3}+.....+\frac{11+12}{11\cdot12}-\frac{12+13}{12\cdot13}\)

\(=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-...+\frac{1}{11}+\frac{1}{12}-\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{2}-\frac{1}{13}=\frac{11}{26}\)

Thanks "Blue Moon" nhìu nha

17 tháng 3 2018

a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}\)

\(=\frac{12}{60}+\frac{-5}{60}\)

\(=\frac{7}{60}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{2}{3}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

17 tháng 3 2018

a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

21 tháng 5 2017

A = 1/5 + [1/5.6 + 1/6.7 + ... + 1/12.13]

A = 1/5 + [1/5-1/6+1/6-1/7+...+1/12-1/13]

A = 1/5 + [1/5-1/13]

A = 1/5 + 8/65

A = 21/65

6 tháng 9 2015

\(\frac{1}{110}+\frac{1}{90}+.....+\frac{1}{20}=\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{10.11}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)

Vậy tổng bằng 7/44

26 tháng 7 2015

Ta có công thức : \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(\Rightarrow B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+10}\)

           \(=\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+10\right)10}{2}}\)

           \(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)

           \(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

           \(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

           \(=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)

30 tháng 4 2019

1/ Tính:

\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\) 

\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\) 

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\) 

\(=1-\frac{1}{10}\) 

\(=\frac{9}{10}\)

10 tháng 5 2017

Bài 1:

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

Bài 2:

Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

Vậy A < 2

Bài 3:

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Bài 4:

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

10 tháng 5 2017

A=1-1/2+1/2-1/3+.............................1/49-1/50

A=1-1/50

A=49/50