Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MC :24
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{1\times8+3\times3-7\times2}{24}=\frac{3}{24}=\frac{1}{8}\)
b)MC : 56
\(\frac{3}{14}+\frac{5}{8}-\frac{1}{2}=\frac{3\times4+5\times7-1\times28}{56}=\frac{19}{56}\)
c) MC: 36
\(\frac{1}{4}-\frac{2}{3}-\frac{11}{18}=\frac{1\times9-2\times12-11\times2}{36}=\frac{-37}{36}\)
d) MC: 312
\(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}=\frac{1\times78+5\times26-1\times24-7\times39}{312}=\frac{-89}{312}\)
a,(11/15+4/15)+(5/7+2/7)
=1+1
=2
b,5/9x(1/2+6/4)
=5/9x2
=10/9
c,1/2:(7/8+9/8)
=1/2:2
=1
d,(17/10-7/10)+1/2
=1+1/2
=3/2
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=2\)
b) \(\frac{5}{9}\times\frac{1}{2}\times\frac{5}{9}\times\frac{6}{4}=\frac{25}{81}\times\frac{3}{4}=\frac{25}{108}\)
c) \(\frac{7}{8}\div\frac{1}{2}+\frac{9}{8}\div\frac{1}{2}=\left(\frac{7}{8}+\frac{9}{8}\right)\div\frac{1}{2}\)
\(=2\div\frac{1}{2}=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}\)
\(=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{5}{9}.\frac{1}{2}.\frac{5}{9}.\frac{6}{4}\)
\(=\left(\frac{5}{9}\right)^2\left(\frac{1}{2}.\frac{6}{4}\right)\)
\(=\frac{25}{81}.\frac{3}{4}\)
\(=\frac{25}{108}\)
c) \(\frac{7}{8}:\frac{1}{2}+\frac{9}{8}:\frac{1}{2}\)
\(=\frac{7}{8}.2+\frac{9}{8}.2\)
\(=2\left(\frac{7}{8}+\frac{9}{8}\right)\)
\(=2.\frac{16}{8}\)
\(=2.2\)
\(=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}\)
\(=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}\)
\(=\frac{2}{2}+\frac{1}{2}\)
\(=\frac{3}{2}\)
1)
a) \(x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)
\(x+\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}=5\)
\(x+\frac{127}{128}=5\)
\(x=5-\frac{127}{128}=\frac{513}{128}\)
b) \(x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}=3\)
\(x+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}=3\)
\(x+\frac{2186}{2187}=3\)
\(x=3-\frac{2186}{2187}=\frac{4375}{2187}\)
2)
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)
\(=\left(5+3\right)+\left(\frac{1}{2}+\frac{2}{3}+\frac{5}{6}\right)\)
\(=8+\left(\frac{3}{6}+\frac{4}{6}+\frac{5}{6}\right)\)
\(=8+2=10\)
c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)
\(=\left(7+1+3\right)+\left(\frac{7}{8}+\frac{2}{3}+\frac{3}{5}\right)\)
\(=11+\left(\frac{105}{120}+\frac{80}{120}+\frac{72}{120}\right)\)
\(=11+\frac{257}{120}=\frac{1577}{120}\)
3) Gọi số đó là x. Theo đề ta có :
\(\frac{16-x}{21+x}=\frac{5}{7}\)
\(7\left(16-x\right)=5\left(21+x\right)\)
\(112-7x=105+5x\)
\(112-105=7x-5x\)
\(7=2x\)
\(x=\frac{7}{2}=3,5\) ( vô lí )
Vậy không có số tự nhiên để thõa mãn điều kiện trên.
a ) \(3\frac{4}{5}-2\frac{3}{4}:1\frac{1}{8}=\frac{19}{5}-\frac{11}{4}:\frac{9}{8}=\frac{19}{5}-\frac{22}{9}=\frac{61}{45}\)
b ) \(4\frac{5}{7}:1\frac{5}{6}+2\frac{7}{15}.\frac{21}{74}=\frac{33}{7}:\frac{11}{6}+\frac{37}{15}.\frac{21}{74}=\frac{18}{7}+\frac{7}{10}=\frac{229}{70}\)
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!