K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Đặt \(B=2+2^2+...+2^{2015}\)

\(2B=2\left(2+2^2+...+2^{2015}\right)\)

\(2B=2^2+2^3+...+2^{2016}\)

\(2B-B=\left(2^2+2^3+...+2^{2016}\right)-\left(2+2^2+...+2^{2015}\right)\)

\(B=2^{2016}-2\) thay B vào A ta có:

\(A=2^{2016}-\left(2^{2016}-2\right)=2^{2016}-2^{2016}+2=2\)

11 tháng 8 2016

=>3A= 3^2017-3^2016+3^2015-...-3^2+3

=>3A+A=4A=3^2017+1=>A=\(\frac{3^{2017}+1}{4}\)

B tương tự nha

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

22 tháng 4 2016

 53463655645

29 tháng 1 2020

\(B=2^{2016}-2^{2015}+2^{2014}-2^{2013}+.......+2^2-2^1+2^0\)

\(\Rightarrow2B=2^{2017}-2^{2016}+2^{2015}-2^{2014}+.........+2^3-2^2+2^1\)

\(\Rightarrow2B+B=3B=2^{2017}+2^0\)

\(\Rightarrow B=\frac{2^{2017}+2^0}{3}=\frac{2^{2017}+1}{3}\)