Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2015 + 2/2014 +3/2013 + ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
\(B=2^{2016}-2^{2015}+2^{2014}-2^{2013}+.......+2^2-2^1+2^0\)
\(\Rightarrow2B=2^{2017}-2^{2016}+2^{2015}-2^{2014}+.........+2^3-2^2+2^1\)
\(\Rightarrow2B+B=3B=2^{2017}+2^0\)
\(\Rightarrow B=\frac{2^{2017}+2^0}{3}=\frac{2^{2017}+1}{3}\)
Đặt \(B=2+2^2+...+2^{2015}\)
\(2B=2\left(2+2^2+...+2^{2015}\right)\)
\(2B=2^2+2^3+...+2^{2016}\)
\(2B-B=\left(2^2+2^3+...+2^{2016}\right)-\left(2+2^2+...+2^{2015}\right)\)
\(B=2^{2016}-2\) thay B vào A ta có:
\(A=2^{2016}-\left(2^{2016}-2\right)=2^{2016}-2^{2016}+2=2\)