K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=-1^2+2^2-3^2+4^2-5^2+6^2-...-2015^2+2016^2\)

\(=1+2+3+...+2016\)

\(=2017\cdot1008=2033136\)

26 tháng 10 2017

\(S=\frac{1}{2}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\)

\(=\frac{1}{2017}\)

Cách phân tích thì dễ thôi\(\frac{1}{2^2-1}=\frac{1}{\left(2-1\right)\left(2+1\right)}=\frac{1}{3}\)

Các cái kia tương tự

26 tháng 10 2017

\(S=\frac{1}{3}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\)

Mình ghi nhầm

a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)

Suy ra: \(x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-1}

13 tháng 9 2021

\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)

\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)

 

 

 

13 tháng 9 2021

\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)

\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)

17 tháng 7 2015

dat A=12-22+.....-20162

-> -A=22-12+42-32+62-52...+20162-20152

-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)

-A=3+7+11+...+4031=[(4031-3):4+1]:2 x (3+4031)=2033136

A=-2033136

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)