Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2\cdot8^4\cdot27^2+44\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot11\cdot2^9\cdot3^9}{2^7\cdot3^7\cdot2^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9\cdot11}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\cdot11\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2\cdot301}{3\cdot31}=\dfrac{602}{93}\)
Ta có: \(A=\left(0,25\right)^{-1}.\dfrac{1}{4}^{-2}.\dfrac{4}{3}^{-2}.\dfrac{5}{4}^{-1}.\dfrac{2}{3}^{-3}\)
--> A= \(\left(\dfrac{\dfrac{1}{1}}{4}\right).\left(\dfrac{\dfrac{1}{1}}{4^2}\right).\left(\dfrac{\dfrac{1}{4^2}}{3^2}\right).\left(\dfrac{\dfrac{1}{5}}{4}\right).\left(\dfrac{\dfrac{1}{2^3}}{3^3}\right)\)
--> A= 4.42. \(\dfrac{3^2}{4^2}\).\(\dfrac{4}{5}\) . \(\dfrac{3^3}{2^3}\)
--> A= \(\dfrac{4.4^2.3^2.3^3}{4^{2.}.5.2^3}=\dfrac{2.3^5}{5}=\dfrac{2.243}{5}\)
--> A= 97,2
TÌM X:
a) 2x - 3 = \(\frac{1}{2}\)
2x = \(\frac{1}{2}+3\)
2x = \(\frac{7}{2}\)
x = 2 : \(\frac{7}{2}\)
x = 2 . \(\frac{2}{7}\)
x = \(\frac{4}{7}\)
b) /x+1/ = 0.25
/x+1/ = \(\frac{1}{4}\)
\(\orbr{\begin{cases}x+1=\frac{1}{4}\\x+1=-\frac{1}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{4}-1\\x=-\frac{1}{4}-1\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{3}{4}\\x=-\frac{5}{4}\end{cases}}\)
c) 32 : 2x = 2
\(2x=32:2\)
\(2x=16\)
\(x=16:2\)
\(x=8\)
~GOOD STUDY~
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(\dfrac{3}{2}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{3}{2}x=-\dfrac{43}{35}\)
\(\Leftrightarrow x=-\dfrac{86}{105}\)
Vậy \(x=-\dfrac{86}{105}\)
\(-\dfrac{11}{12}x+0,25=\dfrac{5}{6}\)
\(\Leftrightarrow-\dfrac{11}{12}x+\dfrac{1}{4}=\dfrac{5}{6}\)
\(\Leftrightarrow-\dfrac{11}{12}x=\dfrac{7}{12}\)
\(\Leftrightarrow x=-\dfrac{7}{11}\)
Vậy \(x=-\dfrac{7}{11}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = {3; 1}\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
(x - 2)2 = 1
<=>\(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = 3; 1
(2x - 1)3 = -8
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = \(\dfrac{-1}{2}\)
Vậy x = \(\dfrac{-1}{2}\)
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)