Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/10 + 1/15 + 1/21 + ... + 1/66
=> 1/2.A = 1/20 + 1/30 + 1/42 + ... + 1/132
=> 1/2.A = 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/11.12
=> 1/2.A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/11 - 1/12
=> 1/2.A = 1/4 - 1/12
=> 1/2.A = 1/6
=> A = 1/6 : 1/2
=> A = 1/3
Vậy 1/10 + 1/15 + ... + 1/66 = 1/3
Đặt A = 1/10 + 1/15 + 1/21 + ... + 1/66
=> 1/2.A = 1/20 + 1/30 + 1/42 + ... + 1/132
=> 1/2.A = 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/11.12
=> 1/2.A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/11 - 1/12
=> 1/2.A = 1/4 - 1/12
=> 1/2.A = 1/6
=> A = 1/6 : 1/2
=> A = 1/3
Vậy 1/10 + 1/15 + ... + 1/66 = 1/3
xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2
=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n
P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2
P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2
P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n
Bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...
xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2
=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n
P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2
P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2
P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n
bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...
B= 3/2.4/3. ....2001/2000
B = 3.4....2001/2.3....2000
B =2001/2
Phương pháp:
+) Kiểm tra tính liên tục của hàm số tại x = 1
+) Nếu hàm số liên tục tại x = 1, sử dụng công thức tính đạo hàm bằng định nghĩa:
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^{50}}\)
=>\(3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{49}}\)
=>\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{49}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{50}}\right)\)
=>2A=\(1-\frac{1}{3^{50}}\)
=>A=\(\frac{1-\frac{1}{3^{50}}}{2}\)
\(=>A=\frac{1}{2}-\frac{1}{\frac{3^{50}}{2}}=\frac{1}{2}-1.\frac{2}{3^{50}}=\frac{1}{2}-\frac{2}{3^{50}}=\frac{3^{50}-4}{2.3^{50}}\)
Vậy..................
Xin lỗix nha mình chỉ biết kết qur thôi chứ ko biết cách giải chi tiết.
Nếu kết quả thì là \(-\frac{7}{2}\)
Ta có
z = 1 + i 21 - 1 1 + i - 1 = 1 + i 21 - 1 i = 1 + i 2 10 1 + i - 1 i = - 2 10 + 2 10 + 1 i .
Vậy tổng phần thực và phần ảo của số phức z bằng 1
Đáp án A
Đáp án
Bài giải qua 3 bước như sau:
Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:
S = 1 + 2 + ... + (n - 1) + n ( * )
Khi viết S theo thứ tự ngược lại la có:
S = n + (n - 1) + ... + 2 + 1 ( ** )
Cộng vế với vế của ( * ) và ( ** ) ta có:
S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]
2 . S = [n + 1] + [n + 1] + . . . + [n + 1] + [n + 1] (Tổng có n số hạng [n + 1] )
2 . S = n.(n + 1)
=> S = n.(n + 1)/2
=> Số hạng tổng quát của tổng đã cho là:
Bước 2: Ta có nhận xét:
=> ( *** )
Bước 3: Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:
. . .
Cộng các vế với nhau ta được:
Vậy tổng đã cho có kết quả bằng 2.
Đặng Thị Thùy Linh copy đáp án trên OLM
bn có thể vào mục "toán vui mỗi tuần" của OLM
1/50x51+1/51x52+.....+1/99x100
ta rút gọn còn: 1/50+1/100
= 2/100+1/100
= 3/100
3/100