Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tử số :
Số thứ nhất : 1= 1
Số thứ hai : 3 = 1 + 2
Số thứ ba : 6 = 1 + 2 + 3
Số thứ tư : 10 = 1 + 2 + 3 + 4
..............
Số thứ chín : 45 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số thứ mười : 55 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
Tử số = 10 x 1 + 9 x 2 + 8 x 3 + 7 x 4 + ... + 2 x 9 + 1 x 10
=> \(\frac{1+3+6+10+...+45+55}{1.10+2.9+3.8+...+9.2+10.1}=1\)
Bài làm:
Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)
\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)
\(=\frac{1}{2}.\frac{11}{12}\)
\(=\frac{11}{24}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\times\left(1-\frac{1}{12}\right)\)
\(=2\times\frac{11}{12}\)
\(=\frac{11}{6}\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)
\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)
\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)
\(A=2\times\dfrac{9}{22}\)
\(A=\dfrac{9}{11}\)