Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(S_{99}=\dfrac{99\cdot\left[2\cdot6+98\cdot\left(-2\right)\right]}{2}=99\cdot\left(6-98\right)\)
=-9108
2: \(S_{100}=\dfrac{100\cdot\left(2\cdot\left(-2\right)+99\cdot4\right)}{2}=50\left(-4+99\cdot4\right)\)
=50*392
=19600
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)\)
\(A=9.\dfrac{99}{100}\)
\(A=\dfrac{891}{100}\)
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{99^2}\right)\left(1-\dfrac{1}{100^2}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)\left(1+\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{98}{99}.\dfrac{100}{99}.\dfrac{99}{100}.\dfrac{101}{100}\)
\(=\dfrac{1.2...98.99}{2.3...99.100}.\dfrac{3.4...100.101}{2.3...99.100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
Trứng vịt chiếm 99% trên tổng số 100 quả.
=> Có 1 quả trứng gà và 99 quả trứng vịt.
Để trứng vịt chiếm 98% thì trứng gà sẽ chiếm 2% còn lại.
=>Tổng số trứng sau khi lấy ra là: 1 : 2% = 50 quả
mà số trứng gà không đổi (vẫn chỉ có một quả)
=>Lúc sau có 49 quả trứng vịt.
Vậy số trứng vịt lấy ra là: 99 - 49 = 50
*Ban đầu:(100 trứng )với 99% vịt (99 trứng ) --> 1% gà (1 trứng ) => 1 trứng =
1%
*Lúc sau: 1 trứng =2 % =>49 trứng =98% +1 trứng gà không thay đổi với 2%(98%+2%= 100 %)
Vậy số trứng vịt lấy ra: số trứng vịt bđ(99)- số trứng vịt sau (49) trứng =50 trứng
\(S=C_{100}^1-C_{100}^2+...-C_{100}^{100}\)
Ta có:
\(\Rightarrow S_1=C_{100}^0-C_{100}^1+C_{100}^2+...+C_{100}^{100}=0\)
\(\Rightarrow C_{100}^0=C_{100}^1-C_{100}^2+...-C_{100}^{100}=1\)(chuyển vế)
Vậy \(S=1\)