Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Đặt A=x+x^2+x^3+...+x^99+x^100
Khi x=-1 thì A=(-1)+(-1)^2+(-1)^3+...+(-1)^100
=(-1+1)+(-1+1)+...+(-1+1)
=0
b: Đặt B=x^2+x^4+...+x^100
Khi x=-1 thì B=(-1)^2+(-1)^4+...+(-1)^100
=1+1+...+1
=50
công thức tổng quát (n+1-n)/n(n+1)
a.)1/x(x+1)+1(x+1)(x+2)+...+1/(x+99)(x+110
=1/x-1(x+1)+1/(x+1)-1/(x+1)+...+1/(x+99)-1/(x+100)
=1/x-1/(x+100)
=(x+100-x)/x(x+100)
=100/x(x+100)
b;)1/(x-1)(x-2)+2/(x-2)(x-3)-3/(x-3)(x-1)
=(x-3)/(x-1)(x-2)(x-3)+(2x-1)/(x-1)(x-2)(x-3)-(3x-6)/(x-1)(x-2)(x-3)
=(x-3+2x-1-3x+6)/(x-1)(x-2)(x-3)
=2/(x-1)(x-2)(x-3)
a) Ta có: \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90}{15}-\dfrac{5\left(1-2x\right)}{15}\)
\(\Leftrightarrow3x-9=90-5+10x\)
\(\Leftrightarrow3x-9=10x+85\)
\(\Leftrightarrow3x-10x=85+9\)
\(\Leftrightarrow-7x=94\)
hay \(x=-\dfrac{94}{7}\)
Vậy: \(S=\left\{-\dfrac{94}{7}\right\}\)
b) Ta có: \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow\dfrac{2\left(3x-2\right)}{12}-\dfrac{60}{12}=\dfrac{3\left(3-2x-14\right)}{12}\)
\(\Leftrightarrow6x-4-60=9-6x-42\)
\(\Leftrightarrow6x-64=-6x-33\)
\(\Leftrightarrow6x+6x=-33+64\)
\(\Leftrightarrow12x=31\)
hay \(x=\dfrac{31}{12}\)
Vậy: \(S=\left\{\dfrac{31}{12}\right\}\)
c) Ta có: \(3\left(x-1\right)+3=5x\)
\(\Leftrightarrow3x-3+3=5x\)
\(\Leftrightarrow3x-5x=0\)
\(\Leftrightarrow-2x=0\)
hay x=0
Vậy: S={0}
d) Ta có: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\dfrac{x+1}{100}+1+\dfrac{x+2}{99}+1=\dfrac{x+3}{98}+1+\dfrac{x+4}{97}+1\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
nên x+101=0
hay x=-101
Vậy: S={-101}
a) \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\\ \Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-10x=90-5+9\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\dfrac{-94}{7}\)
Vậy \(x=\dfrac{-94}{7}\) là nghiệm của pt
b) \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\\ \Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{9-6\left(x+7\right)}{12}\\ \Leftrightarrow6x-4-60=9-6x-42\\ \Leftrightarrow6x+6x=9-42+4+60\\ \Leftrightarrow12x=31\\ \Leftrightarrow x=\dfrac{31}{12}\)
Vậy \(x=\dfrac{31}{12}\) là nghiệm của pt
c) \(3\left(x-1\right)+3=5x\\ \Leftrightarrow3x+3+3=5x\\ \Leftrightarrow5x-3x=3+3\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt
d) \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\\ \Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\\ \Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\\ \Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\\ \Leftrightarrow x+101=0\\ \Leftrightarrow x=-101\)
Vậy x = -101 là nghiệm của pt
e) \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\\ \Leftrightarrow\left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{53-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)=0\\ \Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\\ \Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\\ \Leftrightarrow100-x=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
f) \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\\ \Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\\ \Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\\ \Leftrightarrow x-100=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
Áp dụng định lý Bê-du, tìm được số dư phép chia f(x) cho x+1 chính là f(-1)
Số dư là :
\(f\left(-1\right)=1-\left(-1\right)+\left(-1\right)^2-\left(-1\right)^3+...-\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( 101 số )
\(=1.101=101\)
Vậy ...
x+1<x+2<x+3<x+4 ( với mọi x)
\(\dfrac{1}{100}\) < \(\dfrac{1}{99}\)<\(\dfrac{1}{3}\) <\(\dfrac{1}{2}\)
=>\(\dfrac{x+1}{100}\)+\(\dfrac{x+2}{99}\) <\(\dfrac{x+3}{3}\)+\(\dfrac{x+4}{2}\) là đúng
a) Ta có:
\(A\left(x\right)=x^3-30x^2-31x+1\)
\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)
\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)
\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)
\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)
+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:
\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)
\(A\left(x\right)=0.992+1\)
\(A\left(x\right)=0+1\)
\(A\left(x\right)=1.\)
Vậy giá trị của biểu thức \(A\left(x\right)\) là \(1\) tại \(x=31.\)
\(S=\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+....+\frac{1}{\left(x+99\right).\left(x+100\right)}\)
\(S=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}\)
\(S=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{x^2+100x}\)
cái gì giúp cái gì