Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+...+\dfrac{1}{625}+\dfrac{1}{78125}\)
\(=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^7}\)
\(5A=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^6}\)
\(\Leftrightarrow5A-A=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^6}-1-\dfrac{1}{5}-\dfrac{1}{5^2}-\dfrac{1}{5^3}-...-\dfrac{1}{5^7}\)
\(\Leftrightarrow4A=5-\dfrac{1}{5^7}\Leftrightarrow A=\dfrac{5-\dfrac{1}{5^7}}{4}=\dfrac{\dfrac{390624}{78125}}{4}=\dfrac{390624}{312500}=\dfrac{97656}{78125}\)
a) 5 . 125 . 2 . 41 . 8
= (5 . 8) . (125 . 2) . 41
= 40 . 250 . 41
= 10 000 . 41
= 410 000
b) 25 . 7 . 10 . 4
= (25 . 4 ) . (10 . 7)
= 100 . 70
= 7000
Chúc bạn học tốt!! ^^
a,5.125.2.41.8=(125.8).(2.5).41=1000.10.41=410000
b,25.7.10.4=(25.4).70=100.70=7000
c,8.12.125.2=(8.125).12.2=100.24=2400
d,4.36.25.50=(4.25).(2.50).18=100.100.18=180000
bài 6: TÍNH NHANH NÂNG CAO LỚP 5
A= 1/5+1/25+1/125+1/625+1/3125
giải hộ mình nhanh nhanh nha các bạn
5A=(1/5+1/25+1/125+1/625+1/3125)*5
5A=(1+1/5+1/25+1/125+1/625)
5A-A=(1+1/5+1/25+1/125+1/625)-(1/5+1/25+1/125+1/625+1/3125)=1-1/3125
4A=1-1/3125=3124/3125
A=3124/3125:4=781/3125.
A = 3/1×5 + 3/5×9 + 1/9×13 + ... + 9/97×101 + 3/101×105
A = 3/4 × (4/1×5 + 4/5×9 + 4/9×13 + ... + 4/97×101 + 4/101×105)
A = 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101 + 1/101 - 1/105)
A = 3/4 × (1 - 1/105)
A = 3/4 × 104/105
A = 26/35
B = 1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625
5B = 1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125
5B - B = (1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125) - (1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625)
4B = 1 - 1/15625
4B = 15624/15625
B = 15624/15625 : 4
B = 3906/15625
C = 1 + 2 + 4 + 8 + 16 + ... + 2048 + 4096
2C = 2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192
2C - C = (2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192) - (1 + 2 + 4 + 8 + ... + 2048 + 4096)
B = 8192 - 1
B = 8191
\(A=1+\frac{1}{5}+\frac{1}{25}+...+\frac{1}{78125}\)
\(5A=5+1+\frac{1}{5}+\frac{1}{25}+...+\frac{1}{15625}\)
\(\left(5A-A\right)=\left(5+1+\frac{1}{5}+...+\frac{1}{15625}\right)-\left(1+\frac{1}{5}+...+\frac{1}{78125}\right)\)
\(4A=5-\frac{1}{78125}\)
\(A=5-\frac{1}{312500}\)