K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

b. (x-1) . (y+2) = 7

+) x-1 = 1; y+2 = 7 => x = 0; y = 5

+) x-1 = 7; y+2 = 1 => x = 8; y = -1

+) x-1 = -1; y+2 = -7 => x = 0; y = -9

+) x-1 = -7; y+2 = -1 => x = -6; y = -3

10 tháng 1 2016

b) (x - 1)(y + 2) = 7 = 1.7=  (-1)(-7)

x - 1 = 1 => x = 2

y + 2 = 7 => y = 5

x-  1=  -1 => x=  0

y + 2=  -7 => y = -9

x - 1 = 7 => x = 8

y + 2 = 1 => y = -1

x - 1 = -7 => x = -6

y + 2=  -1 => y = -1

Vậy (x , y) = (2,5) ; (0 ; -9) ; (8 ; -1) ; (-6;  -1)

c) (x + y)(y - 1) = 5 = 1.5 = (-1)(-5)

y - 1 = 1 => y = 2

< = > x = 3

y - 1 = 5 => y = 6

< = > x = -5

y - 1 = -1 => y = 0

< = > x = -4

y - 1 = -5 => y = -4

< = > x = 3

Vậy (x,  y) = (2 , 3) ; (6 ; -5) ; (0 ; -4) ; (-4 ; 3)

3 tháng 1 2022

B. 7

2 tháng 6 2017

Tui có cách khác đây, góp vui thôi thi đừng xài (bí lắm xài cx dc)

Dự đoán dấu "=" xảy khi \(x=y=z=1\) tính được \(P=3\)

Vậy cần chứng minh đó là GTNN của P

Thật vậy, tức là cần chứng minh 

\(P=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\ge3\)

\(\Leftrightarrow\frac{3+3x}{9+9y^2}+\frac{3+3y}{9+9z^2}+\frac{3+3z}{9+9x^2}\ge1\)

\(\LeftrightarrowΣ\frac{4x+y+z}{\left(x+y+z\right)^2+9y^2}\ge\frac{3}{x+y+z}\)

\(\LeftrightarrowΣ\left(7x^6+30x^5y+21x^5z-6x^4y^2+57x^4z^2+14x^3y^3+75x^4yz-6x^3y^2z+66x^3z^2y-258x^2y^2z\right)\ge0\)

BĐT cuối đúng vì \(Σx^6\geΣx^4y^2\) theo BĐT Rearrangement còn lại đúng theo AM-GM

P/s:dưới chân mỗi Σ bn ghi chữ "cyc" hộ mk nhé

1 tháng 6 2017

Hướng giải nè: 

P/s: đây là cách giải của bản thân mik nên chưa bt nó tối ưu chưa

\(\frac{x+1}{1+y^2}=\left(x+1\right)-\frac{y^2.\left(x+1\right)}{1+y^2}\ge\left(x+1\right)-\frac{y.\left(x+1\right)}{2}=x-\frac{y}{2}+1-\frac{xy}{2}\)

bạn lm tương tự r cộng vào,,đánh giá nốt là ok

DD
1 tháng 6 2021

a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

DD
1 tháng 6 2021

b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)

\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)

17 tháng 11 2017

mk ms hok lp 6 thoy nên ko biết làm 

tk mk nha

chúc các bn hok tốt !

17 tháng 11 2017

điêu thế làm sao 3 dc

19 tháng 9 2016

áp dụngBĐT cô si ta có

\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x

\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y

\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z

khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)

áp dụng BĐT cô si

x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3

do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\)  (đpcm)

30 tháng 3 2019

\(\hept{\begin{cases}\frac{1}{z}=2-\frac{1}{x}-\frac{1}{y}\left(1\right)\\\frac{2}{xy}-\left(2-\frac{1}{x}-\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(\frac{1}{y^2}-\frac{4}{y}+4\right)+\left(\frac{1}{x^2}-\frac{4}{x}+4\right)=0\)

\(\Leftrightarrow\left(\frac{1}{y}-2\right)^2+\left(\frac{1}{x}-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow x+y+z=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}=\frac{1}{2}\)

19 tháng 11 2015

tick mình xong mình giải cho

22 tháng 7 2019

2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)

And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)

\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)

Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)

Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm ) 

22 tháng 7 2019

\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)

Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)

Tương tự, ta cũng có: 

\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)

\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)

\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm )