Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) chia hết cho x - 2
=> P(2) = 0
=> \(2^4+m.2^3-55.2^2+2n-156=0\)<=> 8m + 2n = 360 => 4m + n = 180
P(x) chia hết cho x - 3
=> P(3) = 0
=> \(3^4+m.3^3-55.3^2+3n-156=0\)<=> 27m + 3n = 570 => 9m + n = 190
=> ( 9m + n ) - ( 4m+ n ) = 190 - 180
=> 5m = 10
=> m = 2
=> 4.2 + n = 180 => n = 172
Vậy P(x) = \(x^4+2x^3-55x^2+172x-156\)
P(x) chia hết cho x-2<=>P(2)=24 + 8m - 220 +2n - 156 =0 (1)
P(x) chia hết cho x-3<= >P(3)=34 + 27m - 495 + 3n -156=0 (2)
Từ (1) và (2) suy ra:
{16+8m-220+2n-156=0 <=>8m+2n=360
{81+27m-495+3n-156=0 <=>27m+3n=570
Giair hệ phương trình ta được
m=2 và n=172
thay m,n vào P(x), ta được:
P(x)=x4+2x3-55x2+172x-156
<=>P(x)=(x-2)(x-3)(x2+7x+6)<=>P(x)=0
<=>[x-2=0 <=>x=2
[x-3=0 <=>x=3
[x2+7x+6=0 <=>x=-7+3√17 / 2 hoặc x=7-3√17 / 2
13n = 13n - 13 + 13
= 13(n - 1) + 13
Để 13n ⋮ (n - 1) thì 13 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ n ∈ {-12; 0; 2; 14}
Tổng của chúng là:
-12 + 0 + 2 + 14 = 4
\(m-1⋮2m+1\)
\(\Rightarrow2m-2⋮2m+1\)
\(\Rightarrow2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
tu lam
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
x^3+3x-5 chia hết cho x^2+2
=>x^3+2x+x-5 chia hết cho x^2+2
=>x-5 chia hết cho x^2+2
=>x^2-25 chia hết cho x^2+2
=>x^2+2-27 chia hết cho x^2+2
=>x^2+2 thuộc Ư(-27)
=>x^2+2 thuộc {3;9;27}
=>\(x\in\left\{1;-1;5;-5\right\}\)
Cho A=2x-3 ; B=6-x
a)So sánh A và B
b)Tìm tất cả các giá trị nguyên của x để tích A.B có giá trị dương
a) Xét hiệu A - B
= 2x - 3 - (6-x) = 3x-9
Nếu x < 3 => 3x - 9 < 3.3-9 = 0 => A < B
Nếu x = 3 thì 3x - 9 = 0 => A = B
Nếu x > 3 thì 3x - 9 >0 => A > B
Vậy .....
b)
Để A.B > 0
=> (2x-3)(6-x) > 0
\(\left\{{}\begin{matrix}2x-3>0\\6-x>0\end{matrix}\right.hoặc\left\{{}\begin{matrix}2x-3< 0\\6-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< 6\end{matrix}\right.\Leftrightarrow\dfrac{3}{2}< x< 6\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>6\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
Vậy \(\dfrac{3}{2}< x< 6\) là giá trị cần tìm