\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) va 2x + 3y -z = 5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

áp dụng tính chất dảy tỉ số bằng nhau

ta có : \(\dfrac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{\left(2.2\right)+\left(3.3\right)-4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\dfrac{\left(2x+3y-z\right)-5}{9}=\dfrac{50-5}{9}=\dfrac{45}{9}=5\)

suy ra ta có : \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=2.5\\y-2=3.5\\z-3=4.5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+1\\y=15+2\\z=20+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\) vậy \(x=11;y=17;z=23\)

19 tháng 10 2017

cám ơn bạn nha

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
8 tháng 10 2017

a,3x=2y;7y=5z

=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta co:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)

Các câu sau tương tự

10 tháng 10 2017

b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6

Từ đề bài ta có:

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)

từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3

\(\Rightarrow\)x=3.9=27

y=3.12=36

z=3.20=60

Vậy.....

chúc bạn học tốt,nhớ tick cho mình nhaleuleu

27 tháng 9 2017

Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12.\left(x+y+z\right)}{49}\)

\(=\dfrac{12.49}{49}=12\)

\(\Rightarrow\dfrac{2x}{3}=12\Rightarrow x=18\)

\(\dfrac{3y}{4}=12\Rightarrow y=16\)

\(\dfrac{4z}{5}=12\Rightarrow z=15\)

Vậy \(x=18;y=16;z=15\)

19 tháng 11 2017

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=12.\dfrac{3}{2}=18\)

\(\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=12.\dfrac{4}{3}=16\)

\(\dfrac{y}{\dfrac{5}{4}}=12\Rightarrow y=12.\dfrac{5}{4}=15\)

Vậy x;y;z lần lượt là 18;16;15

17 tháng 7 2017

a,

\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)

\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)

Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)

b,

\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)

Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)

c,

\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)

Vậy \(x=-12;y=-28\)

d,

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)

Vậy \(x=80;y=16;z=-32\)

e,

\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)

Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)

f,

\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)

\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)

Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)

g,

\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)

\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)

Vậy \(x=6;y=16;z=10\)

Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17;z=23

31 tháng 7 2017

d) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(xyz=810\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

=> \(x=2k\) ; \(y=3k\) ; \(z=5k\)

Thay \(x=2k;y=3k;z=5k\) vào \(xyz=810\) ta được

\(2k.3k.5k=810\)

\(30k=810\)

\(k^3=27\)

=> k = 3

=> \(x=2.3=6\)

=> \(y=3.3=9\)

=> \(z=5.3=15\)

19 tháng 1 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\cdot\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\)

\(\Rightarrow\dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\)

\(\Rightarrow\dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\)

\(\Rightarrow\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\)

Thay vào \(y+z+1=2x\) ; ta có :

\(\dfrac{1}{2}-x+1=2x\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\)

Thay vào \(x+z+2=2y\) ; ta có :

\(\dfrac{1}{2}-y+2=2y\Rightarrow3y=\dfrac{5}{2}\Rightarrow y=\dfrac{5}{6}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow x+y=\dfrac{1}{2}-z\)

Thay vào \(x+y-3=2z\) ; ta có :

\(\dfrac{1}{2}-z-3=2z\Rightarrow3z=\dfrac{-5}{2}\Rightarrow z=\dfrac{-5}{6}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

17 tháng 10 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{3\left(x-1\right)}{6}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{3x-3}{6}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-3}{6}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{3x-3+3y-6-z+3}{6+9-4}=\dfrac{\left(3x+3y-z\right)+\left(3-3-6\right)}{11}=\dfrac{50-6}{11}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=4\Leftrightarrow x=4.2+1=9\\\dfrac{y-2}{3}=4\Leftrightarrow y=4.3+2=14\\\dfrac{z-3}{4}=4\Leftrightarrow z=4.4+3=19\end{matrix}\right.\)

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

15 tháng 11 2018

undefined