K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

áp dụng tính chất dảy tỉ số bằng nhau

ta có : \(\dfrac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{\left(2.2\right)+\left(3.3\right)-4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\dfrac{\left(2x+3y-z\right)-5}{9}=\dfrac{50-5}{9}=\dfrac{45}{9}=5\)

suy ra ta có : \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=2.5\\y-2=3.5\\z-3=4.5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+1\\y=15+2\\z=20+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\) vậy \(x=11;y=17;z=23\)

19 tháng 10 2017

cám ơn bạn nha

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
13 tháng 3 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}=\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

\(=\dfrac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) \(=\dfrac{2x-2+3y-6-z+3}{9}\)

\(=\dfrac{50-5}{9}=\dfrac{45}{9}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

\(\Rightarrow x+y+z=11+17+23=51\)

13 tháng 3 2017

Theo đề bài ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{x-1}{2}=\frac{2\left(x-1\right)}{2}=\frac{2x-2}{2}\)

\(\Rightarrow\frac{y-2}{3}=\frac{3\left(y-2\right)}{3}=\frac{3y-6}{3}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50-5}{9}=5\)

\(\Rightarrow\left\{\begin{matrix}x-1=5.2=10\Leftrightarrow x=11\\y-2=5.3=15\Leftrightarrow y=17\\z-3=5.4=20\Leftrightarrow z=23\end{matrix}\right.\)

Vậy: \(\left\{\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

17 tháng 10 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{3\left(x-1\right)}{6}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{3x-3}{6}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-3}{6}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{3x-3+3y-6-z+3}{6+9-4}=\dfrac{\left(3x+3y-z\right)+\left(3-3-6\right)}{11}=\dfrac{50-6}{11}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=4\Leftrightarrow x=4.2+1=9\\\dfrac{y-2}{3}=4\Leftrightarrow y=4.3+2=14\\\dfrac{z-3}{4}=4\Leftrightarrow z=4.4+3=19\end{matrix}\right.\)

8 tháng 10 2017

a,3x=2y;7y=5z

=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta co:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)

Các câu sau tương tự

10 tháng 10 2017

b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6

Từ đề bài ta có:

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)

từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3

\(\Rightarrow\)x=3.9=27

y=3.12=36

z=3.20=60

Vậy.....

chúc bạn học tốt,nhớ tick cho mình nhaleuleu

15 tháng 11 2018

undefined

9 tháng 6 2018

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)\(\dfrac{x-1}{2}=\dfrac{2x-2}{4}\)\(\dfrac{y-2}{3}=\dfrac{3y-6}{9}\)

=> \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\) và 2x+3y-z=50

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}\) \(=\dfrac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}\) \(=\dfrac{50-5}{9}=5\)

\(\dfrac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\dfrac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\dfrac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy x=11 ; y= 17 ; z=23

8 tháng 6 2018

Giải:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2.2}=\dfrac{3\left(y-2\right)}{3.3}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=\dfrac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=20\\3y-6=45\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{20+2}{2}\\y=\dfrac{45+6}{3}\\z=20+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy ...

17 tháng 9 2021

1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

⇒ x=4;y=6;z=8

17 tháng 9 2021

\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)

\(2,\) Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)

\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)

\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)