K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)

\(\Rightarrow\frac{1}{6}.\frac{2x}{5}=\frac{1}{6}.\frac{3y}{10}=\frac{1}{6}.\frac{z}{12}\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{72}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\) 

Bạn xem lại đề bài nhé !!! 

14 tháng 4 2018

Ta có : 

\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)

\(\Leftrightarrow\)\(\frac{2x}{5}.\frac{1}{6}=\frac{3y}{10}.\frac{1}{6}=\frac{z}{12}.\frac{1}{6}\)

\(\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)

Và \(x+y+z=109\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)

Do đó : 

\(\frac{x}{15}=\frac{109}{107}\)\(\Rightarrow\)\(x=\frac{109}{107}.15=\frac{1635}{107}\)

\(\frac{y}{20}=\frac{109}{107}\)\(\Rightarrow\)\(y=\frac{109}{107}.20=\frac{2180}{107}\)

\(\frac{z}{72}=\frac{109}{107}\)\(\Rightarrow\)\(z=\frac{109}{107}.72=\frac{7848}{107}\)

Vậy \(x=\frac{1635}{107}\)\(;\)\(y=\frac{2180}{107}\) và \(z=\frac{7848}{107}\)

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
1 tháng 9 2020

Lời giải:
Đặt $\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}=t$

$\Rightarrow x=\frac{5}{2}t; y=\frac{10}{3}t; z=12t$

Khi đó:

$x+y+z=109$

$\Leftrightarrow \frac{5}{2}t+\frac{10}{3}t+12t=109$

$\Leftrightarrow \frac{107}{6}t=109\Rightarrow t=\frac{654}{107}$

$\Rightarrow x=\frac{5}{2}t=\frac{1635}{107}; y=\frac{10}{3}t=\frac{2180}{107}; z=12t=\frac{7848}{107}$

29 tháng 12 2016

a)

\(2x=3y\Rightarrow y=\frac{2x}{3}\)

\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)

(x,y,z)=(15/7,10/7,6/7)

(x,y,z)=(-15/7,-10/7,-6/7)

17 tháng 5 2017

\(\left|x-2y\right|=5\Leftrightarrow x-2y=\pm5\)

\(2x=3y=5z\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

TH1:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\frac{x}{15}=1\Rightarrow x=15\);\(\frac{y}{10}=1\Rightarrow y=10\);\(\frac{z}{6}=1\Rightarrow z=6\)

TH2: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\frac{x}{15}=-1\Rightarrow x=-15\);\(\frac{y}{10}=-1\Rightarrow y=-10\);\(\frac{z}{6}=-1\Rightarrow z=-6\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405