Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)
Vậy MinB=2013 khi x=2
A=I2x-2I+I2x-2013I
=I2x-2I+I2013-2xI
Ta có : I2x-2I >=( lớn hơn hoặc = ) 2x-2 với mọi x
I2013-2xI>=2013-2x với mọi x
Do đó A>=2011
Dấu "=" xảy ra (nhỏ nhất khi) <=> I2x-2I và I2013-2xI lần lượt = 2x-2 và 2013-2x <=> 2x-2>=0 và 2013-2x>=0.
Bạn giải nốt ra x>=1006,5 rồi KL
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
a: \(A=2\cdot\left|3x-2\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=2/3
b: \(B=5\cdot\left|1-4x\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=1/4
c: \(x^2+3\left|y-2\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi x=0 và y=2