Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
\(=\sqrt{\left(x^2-6x+9\right)+2\left(y^2+2y+1\right)}+\sqrt{\left(x^2+2x+1\right)+3\left(y^2+2y+1\right)}\)
\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
\(\ge\sqrt{\left(x-3\right)^2+0}+\sqrt{\left(x+1\right)^2+0}\)
\(=\left|3-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+1\right|\)
\(=4\)
Dấu bằng xảy ra khi và chỉ khi :
\(\left(y+1\right)^2=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
\(\left(x-3\right)\left(x+1\right)\ge0\Leftrightarrow x^2-2x-3\ge0\Leftrightarrow\left(x-1\right)^2\ge4\Leftrightarrow\left|x-1\right|\ge2\Leftrightarrow x\ge3;x\le-1\)
Vậy GTNN của biểu thức là 4 khi \(x\ge3\) hoặc \(x\le-1\) và \(y=-1\)
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)
\(=\left(6x-5y-16\right)^2+\left(x+y\right)^2+2\left(x+y+1\right)\)
Dễ thấy \(\left(6x-5y-16\right)^2\ge0\) với mọi x,y
\(\left(x+y\right)^2\ge0\) với mọi x,y
=>GTNN của P là 2(x+y+1) (1)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}6x-5y-16=0\\x+y=0\end{cases}}< =>\hept{\begin{cases}6x-5y=16\\x=-y\end{cases}< =>\hept{\begin{cases}-6y-5y=16\\x=-y\end{cases}}}\)
\(< =>\hept{\begin{cases}-11y=16\\x=-y\end{cases}}< =>\hept{\begin{cases}y=-\frac{16}{11}\\x=\frac{16}{11}\end{cases}}\)
Thay x=16/11;y=-16/11 vào (1),ta tính đc GTNN của P=2 khi x=16/11;y=-16/11
Vậy................................
\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)
\(P=\left(6x-5y-16\right)^2+\left(x+y+1\right)^2+1\ge1\)
dấu bằng xảy ra khi \(\hept{\begin{cases}6x-5y-16=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-5y=16\\x+y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
2P = \(2x^2+4xy+4y^2-12x-8y+50\)
= \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)
= \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)
=> P \(\ge15\)
Dấu '' = '' xảy ra khi x = 4 ; y = -1
\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)
\(\Rightarrow x;y\)
2A = 4x2 + 4xy + 4y2 - 12x - 12y + 8040
= (2x + y)2 - 6(2x + y) + 9 + 3y2 - 6y + 3 + 8028
= (2x + y - 3)2 + 3(y - 1)2 + 8028 \(\ge8028\)
=> \(A\ge4014\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}2x+y=3\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Vậy Min A = 4014 khi x = y = 1