Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 phân số đó là: a/b ; c/d và e/f
tử của chúng tỉ lệ thuận với 3;5;7
--> a/3 = c/5 = e/7 --> c = 5a/3 ; e = 7a/3
mẫu của chúng tỉ lệ thuận với: 2;3;4
--> b/2 = d/3 = f/4 --> d = 3b/2 ; f = 2b
Lại có: a/b + c/d + e/f = 295/24
--> a/b + (5a/3)/(3b/2) + (7a/3)/(2b) = 295/24
--> a/b + (10a)/(9b) + (7a)/(6b) = 295/24
--> (59a)/(18b) = 295/24
--> a/b = 15/4
a/b là phân số tối giản --> a = 15 ; b = 4
--> c = 25 ; d = 6 --> c/d = 25/6
--> e = 35 ; f = 8 --> e/f = 35/8
Gọi 3 phân số cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\) ta có:
Theo đề bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{269}{30}\) (1)
\(\frac{a}{5}=\frac{b}{7}=\frac{c}{11}=k\)=> \(a=5k;b=7k;c=11k\)(2)
\(\frac{b}{4}=\frac{d}{5}=\frac{f}{6}=h\Rightarrow b=4h;d=5h;f=6h\) (3)
Thế (2) , (3) vào (1) ta có:
\(\frac{5k}{4h}+\frac{7k}{5h}+\frac{11k}{6h}=\frac{269}{30}\)
\(\frac{k}{h}\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right)=\frac{269}{30}\)
\(\frac{k}{h}.\frac{269}{60}=\frac{269}{30}\)
\(\frac{k}{h}=2\)
Vì các phân số cần tìm là phân số tối giản
=> k=2; h =1
=> Các phân số cần tìm là:
\(\frac{10}{4}=\frac{5}{2};\frac{14}{5};\frac{22}{6}=\frac{11}{3}\)
Tổng:
\(\frac{1}{3}+\frac{200}{3}=\frac{1+200}{3}=\frac{201}{3}=67\)
Hiệu:
\(\frac{1}{3}-\frac{200}{3}=\frac{1-200}{3}=-\frac{199}{3}\)
Tích:
\(\frac{1}{3}.\frac{200}{3}=\frac{1.200}{3.3}=\frac{200}{9}\)
Gọi 3 phân số cần tìm là \(\frac{a}{b},\frac{c}{d},\frac{e}{f}\)
Theo đề bài ta có: \(\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
\(b:d:f=\frac{1}{\frac{1}{4}}:\frac{1}{\frac{1}{5}}:\frac{1}{\frac{1}{6}}=4:5:6\)\(\Leftrightarrow\)\(\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt \(\frac{a}{5}=\frac{c}{7}=\frac{e}{11}=k\)\(\Rightarrow\)
Theo đề bài ta có:
7(a-b)=1(a+b)=24(a.b)
=> 7a-7b=a+b=24ab
=>7a-a=b+7b=24ab
=>6a=8b=24ab=>a=24:b (1)
6a=8b=>\(\frac{a}{8}=\frac{b}{6}\) (2)
Thay (1) và (2) ,ta co:
24/b/8=b/6=>3/b=b/6=b^2 =3 x 6=18 =>\(b=\sqrt{8}\)
=>a=24:b=24 :\(\sqrt{8}\)=\(\sqrt{2^5}\)
Mik làm đến đây thui
có gì hơi sai sai, bạn thử xem lại xem