Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)
Suy ra phân số đã cho là phân số tối giản (đpcm)
Cái sau tương tự nha bạn
Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1
Vậy với x=1 thì C đạt giá trị nhỏ nhất
Cái sau tương tự nha bạn
a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
a) Để \(\frac{-3}{x-1}\in Z\) \(\Leftrightarrow-3⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow x=\left\{2;0;4;-2\right\}\)
b) Để \(\frac{-4}{2x-1}\in Z\Leftrightarrow-4⋮\left(2x-1\right)\)
\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow2x=\left\{0;2;-1;3;-3;5\right\}\)
\(\Rightarrow x=\left\{0;1;\frac{-1}{2};\frac{3}{2};\frac{-3}{2};\frac{5}{2}\right\}\)
Mà \(x\in Z\) \(\Rightarrow x=\left\{0;2\right\}\)
c) \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+10}{x-1}\)
Vì \(3\left(x-1\right)⋮\left(x-1\right)\Rightarrow10⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow x=\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d) Tương tự
a) x - 1 thuộc Ư(3) = {-3; -1; 1; 3} => x thuộc {-2; 0; 2; 4}
b) \(B=\frac{x+3-5}{x+3}=1-\frac{5}{x+3}\) => x + 3 thuộc Ư(5) = {-5; -1; 1; 5} => x thuộc {-8; -4; -2; 2}
c) \(C=\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\) => x - 3 thuộc Ư(7) = {-7; -1; 1; 7} => x thuộc {-4; 2; 4; 10}
d) \(D\) nguyên <=> x2 - 1 = x2 + x - x - 1 = x.(x + 1) - x - 1 chia hết cho x + 1
<=> x - 1 = x + 1 - 2 chia hết cho x + 1
<=> 2 chia hết cho x + 1
<=> x + 1 thuộc Ư(2) = {-2; -1; 1; 2}
<=> x thuộc {-3; -2; 0; 1}
a) Để A nguyên thì 3 phải chia hết cho x-1 hay x-1 là ước của 3
\(\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
b) ta có :\(B=\frac{x-2}{x+3}=\frac{x+3-5}{x+3}=1-\frac{5}{x+3}\)
để B nguyên thì 5 phải chia hết cho x+3 hay x+3 là ước của 5
\(\left(x+3\right)\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-4;-2;2;-8\right\}\)
c) ta có :\(C=\frac{2x+1}{x-3}=\frac{2\left(x-3\right)+7}{x-3}=2.1+\frac{7}{x-3}=2+\frac{7}{x-3}\)
để C nguyên thì 7 phải chia hết cho x-3 hay x-3 là ước của 7
\(\left(x-3\right)\inƯ\left(7\right)=\left\{-1;1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;4;-4;10\right\}\)
d) tương tự
g)=>x+1/2=0
x=0-1/2
x=-1/2
hoặc 2/3-2x=0
2x=2/3-0
2x=2/3
x=2/3:2
x=1/3
nhìn @_@ hoa cả mắt đăng từng bài thôi bạn