Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)
\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))
tớ mới tra trên mạng đề , nhưng cách làm tớ khác nhé ,sửa đề \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và\(x^2-y^2+2z^2=108\)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\frac{x}{2}=k\Rightarrow x=2k\)
\(\frac{y}{3}=k\Rightarrow y=3k\)
\(\frac{z}{4}=k\Rightarrow z=4k\)
ta có\(x^2-y^2+2z^2=108\)
thay\(\left(2k\right)^2-\left(3k\right)^2+2\left(4k\right)^2=108\)
\(2k.2k-3k.3k+2.4k.4k=108\)
\(k^2.4-k^2.9+k^2.32=108\)
\(k^2\left(4-9\right)+k^2.32=108\)
\(k^2\left(-5\right)+k^2.32=108\)
\(k^2\left[\left(-5\right)+32\right]=108\)
\(k^2.27=108\)
\(k^2=4\)
\(\Rightarrow k=\pm2\)
do đó \(\frac{x}{2}=\pm2\Leftrightarrow\orbr{\begin{cases}\frac{x}{2}=2\\\frac{x}{2}=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}}\)
\(\frac{y}{3}=\pm2\Leftrightarrow\orbr{\begin{cases}\frac{y}{3}=2\\\frac{y}{3}=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}}\)
\(\frac{z}{4}=\pm2\Leftrightarrow\orbr{\begin{cases}\frac{z}{4}=2\\\frac{z}{4}=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}z=8\\z=-8\end{cases}}}\)
vậy các cặp x,y,z thỏa mãn là \(\left\{x=4;y=6;z=8\right\}\left\{x=-4;y=-6;z=-8\right\}\)
đề thiếu nha