K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Ý bạn hỏi là?

12 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{5-4}=\frac{3}{1}=3\)

\(\frac{x}{5}=3\Rightarrow x=3.5=15\)

\(\frac{y}{4}=3\Rightarrow y=3.4=12\)

\(\frac{z}{3}=3\Rightarrow z=3.3=9\)

Vậy x=15 ; y=12 và z=9

20 tháng 12 2017

a) x:y:z:t=2:3:4:5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính ... , ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)

\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)

b) c ) tương tự

22 tháng 12 2018

Bài này mà không biết làm. 1 cái đi rồi làm cho.

22 tháng 12 2018

mk chỉ đăng thek thôi mà 

nếu ko muốn làm thì thôi đừng ở đó mà ns như làm ra vẻ

12 tháng 9 2021

 x; y ; z lần lượt tỉ lệ với 5 ; 3 ; 2\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{36}{6}=6\)

\(\dfrac{x}{5}=6\Rightarrow x=30\\ \dfrac{y}{3}=6\Rightarrow y=18\\ \dfrac{z}{2}=6\Rightarrow z=12\)

Vậy ...

12 tháng 9 2021

Bài 1:

\(\dfrac{1}{5}=\dfrac{25}{125};\dfrac{5}{1}=\dfrac{125}{25};\dfrac{1}{25}=\dfrac{5}{125};\dfrac{25}{1}=\dfrac{125}{5}\)

17 tháng 11 2016

phần này mình chưa hok

17 tháng 11 2016

y tỉ lệ thuận với x theo hệ số tỉ lệ là 3 nên ta có

y=3x (1)

x tỉ lệ thuận vói z theo hệ số tỉ lệ là -4 nên ta có

x =-4z (2) 

Thay điều (2) vào điều (1)

y=3(-4z)

y=(-4.3).z

y=-12z

Vậy y và z có tỉ lệ thuận với nhau theo hệ số tỉ lệ là -12

Công thức khái quát

y=(hk)x

Mình không biết công thức khái quát mình viết có đúng hay sai không nữa.

DD
25 tháng 10 2021

\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(5\)nên \(\frac{x}{2}=\frac{y}{5}\).

\(y\)và \(z\)tỉ lệ nghịch với \(3\)và \(4\)nên \(\frac{y}{4}=\frac{z}{3}\).

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{y}{4}=\frac{z}{3}\end{cases}}\Leftrightarrow\frac{x}{8}=\frac{y}{20}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{8}=\frac{y}{20}=\frac{z}{15}=\frac{x-y+z}{8-20+15}=\frac{36}{3}=12\)

\(\Leftrightarrow\hept{\begin{cases}x=12.8=96\\y=12.20=240\\z=12.15=180\end{cases}}\)

26 tháng 7 2018

22 tháng 2 2020

a, Ta có : \(\frac{x}{3}=\frac{y}{5}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau .

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)

=> \(\left\{{}\begin{matrix}\frac{x}{3}=2\\\frac{y}{5}=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\)

Vậy giá trị của x = 6, y = 10 .

b, Ta có : \(\frac{x}{5}=\frac{y}{4}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau .

\(\frac{x}{5}=\frac{y}{4}=\frac{x-y}{5-4}=\frac{3}{1}=3\)

=> \(\left\{{}\begin{matrix}\frac{x}{5}=3\\\frac{y}{4}=3\\\frac{z}{3}=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=15\\y=12\\z=9\end{matrix}\right.\)

Vậy giá trị của x = 15, y = 12 ,z = 9

a, Ta có : \(x:y:z:t=2:3:4:5\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau .

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)

=> \(\left\{{}\begin{matrix}\frac{x}{2}=-3\\\frac{y}{3}=-3\\\frac{z}{4}=-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-6\\y=-9\\z=-12\end{matrix}\right.\)

Vậy giá trị của x = -6, y = -9, z = -12 .

22 tháng 2 2020

cảm ơn bạn !

28 tháng 9 2016

Câu 1:

a)Áp dụng tc dãy tỉ:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)

b)Áp dụng tc dãy tỉ:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)

Câu 2:

a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)

\(\Rightarrow14x=126\)

\(\Rightarrow x=9\)

b và c đề có vấn đề

28 tháng 9 2016

Câu 1:

a) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

+) \(\frac{x}{3}=2\Rightarrow x=6\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{2}=2\Rightarrow y=4\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

+) \(\frac{x}{2}=2\Rightarrow x=4\)

+) \(\frac{y}{4}=2\Rightarrow y=8\)

+) \(\frac{z}{6}=2\Rightarrow z=12\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)

Câu 4:

Giải: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: 

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)